Electronic structure in the context of Molecular dynamics


Electronic structure in the context of Molecular dynamics

Electronic structure Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Electronic structure in the context of "Molecular dynamics"


⭐ Core Definition: Electronic structure

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

Chemists rely heavily on spectroscopy through which information regarding the quantization of energy on a molecular scale can be obtained. Common methods are infra-red (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning probe microscopy. Quantum chemistry may be applied to the prediction and verification of spectroscopic data as well as other experimental data.

↓ Menu
HINT:

In this Dossier

Electronic structure in the context of Chemical structure

A chemical structure of a molecule is a spatial arrangement of its atoms and their chemical bonds. Its determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together and can be represented using structural formulae and by molecular models; complete electronic structure descriptions include specifying the occupation of a molecule's molecular orbitals. Structure determination can be applied to a range of targets from very simple molecules (e.g., diatomic oxygen or nitrogen) to very complex ones (e.g., such as protein or DNA).

View the full Wikipedia page for Chemical structure
↑ Return to Menu

Electronic structure in the context of Reflectivity

The reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the response of the electronic structure of the material to the electromagnetic field of light, and is in general a function of the frequency, or wavelength, of the light, its polarization, and the angle of incidence. The dependence of reflectance on the wavelength is called a reflectance spectrum or spectral reflectance curve.

View the full Wikipedia page for Reflectivity
↑ Return to Menu

Electronic structure in the context of Solid oxygen

Solid oxygen is the solid ice phase of oxygen. It forms below 54.36 K (−218.79 °C; −361.82 °F) at standard atmospheric pressure. Solid oxygen O2, like liquid oxygen, is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum.

Oxygen molecules have a relationship between the molecular magnetization and crystal structures, electronic structures, and superconductivity. Oxygen is the only simple diatomic molecule (and one of the few molecules in general) to carry a magnetic moment. This makes solid oxygen particularly interesting, as it is considered a "spin-controlled" crystal that displays antiferromagnetic magnetic order in the low temperature phases. The magnetic properties of oxygen have been studied extensively. At very high pressures, solid oxygen changes from an insulating to a metallic state; and at very low temperatures, it transforms to a superconducting state. Structural investigations of solid oxygen began in the 1920s and, at present, six distinct crystallographic phases are established unambiguously.

View the full Wikipedia page for Solid oxygen
↑ Return to Menu

Electronic structure in the context of Molecular model

A molecular model is a physical model of an atomistic system that represents molecules and their processes. They play an important role in understanding chemistry and generating and testing hypotheses. The creation of mathematical models of molecular properties and behavior is referred to as molecular modeling, and their graphical depiction is referred to as molecular graphics.

The term, "molecular model" refer to systems that contain one or more explicit atoms (although solvent atoms may be represented implicitly) and where nuclear structure is neglected. The electronic structure is often also omitted unless it is necessary in illustrating the function of the molecule being modeled.

View the full Wikipedia page for Molecular model
↑ Return to Menu

Electronic structure in the context of Francium

Francium is a chemical element; it has symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain in which it appears), has a half-life of only 22 minutes. It is the second-most electropositive element, behind only caesium, and is the second rarest naturally occurring element (after astatine). Francium's isotopes decay quickly into astatine, radium, and radon. The electronic structure of a francium atom is [Rn] 7s; thus, the element is classed as an alkali metal.

As a consequence of its extreme instability, bulk francium has never been seen. Because of the general appearance of the other elements in its periodic table column, it is presumed that francium would appear as a highly reactive metal if enough could be collected together to be viewed as a bulk solid or liquid. Obtaining such a sample is highly improbable since the extreme heat of decay resulting from its short half-life would immediately vaporize any viewable quantity of the element.

View the full Wikipedia page for Francium
↑ Return to Menu

Electronic structure in the context of Synchrotron light source

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

The major applications of synchrotron light are in condensed matter physics, materials science, biology and medicine. A large fraction of experiments using synchrotron light involve probing the structure of matter from the sub-nanometer level of electronic structure to the micrometer and millimeter levels important in medical imaging. An example of a practical industrial application is the manufacturing of microstructures by the LIGA process.

View the full Wikipedia page for Synchrotron light source
↑ Return to Menu