Electronic oscillator in the context of "Electronic components"

Play Trivia Questions online!

or

Skip to study material about Electronic oscillator in the context of "Electronic components"

Ad spacer

⭐ Core Definition: Electronic oscillator

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

Oscillators are often characterized by the frequency of their output signal:

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Electronic oscillator in the context of Lee de Forest

Lee de Forest (August 26, 1873 – June 30, 1961) was an American inventor, electrical engineer and an early pioneer in electronics of fundamental importance. He invented the first practical electronic amplifier,the three-element "Audion" triode vacuum tube in 1908. This helped start the Electronic Age, and enabled the development of the electronic oscillator. These made radio broadcasting and long distance telephone lines possible, and led to the development of talking motion pictures, among countless other applications.

He had over 300 patents worldwide, but also a tumultuous career – he boasted that he made, then lost, four fortunes. He was also involved in several major patent lawsuits, spent a substantial part of his income on legal bills, and was even tried (and acquitted) for mail fraud.

↑ Return to Menu

Electronic oscillator in the context of Cavity magnetron

The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of electrons with a magnetic field, while moving past a series of cavity resonators, which are small, open cavities in a metal block. Electrons pass by the cavities and cause microwaves to oscillate within, similar to the functioning of a whistle producing a tone when excited by an air stream blown past its opening. The resonant frequency of the arrangement is determined by the cavities' physical dimensions. Unlike other vacuum tubes, such as a klystron or a traveling-wave tube (TWT), the magnetron cannot function as an amplifier for increasing the intensity of an applied microwave signal; the magnetron serves solely as an electronic oscillator generating a microwave signal from direct-current electricity supplied to the vacuum tube.

The use of magnetic fields as a means to control the flow of an electric current was spurred by the invention of the Audion by Lee de Forest in 1906. Albert Hull of General Electric Research Laboratory, USA, began development of magnetrons to avoid de Forest's patents, but these were never completely successful. Other experimenters picked up on Hull's work and a key advance, the use of two cathodes, was introduced by Habann in Germany in 1924. Further research was limited until Okabe's 1929 Japanese paper noting the production of centimeter-wavelength signals, which led to worldwide interest. The development of magnetrons with multiple cathodes was proposed by A. L. Samuel of Bell Telephone Laboratories in 1934, leading to designs by Postumus in 1934 and Hans Hollmann in 1935. Production was taken up by Philips, General Electric Company (GEC), Telefunken and others, limited to perhaps 10 W output. By this time the klystron was producing more power and the magnetron was not widely used, although a 300 W device was built by Aleksereff and Malearoff in the USSR in 1936 (published in 1940).

↑ Return to Menu

Electronic oscillator in the context of Electronic music

Electronic music broadly is a group of music genres that employ electronic musical instruments, circuitry-based music technology and software, or general-purpose electronics (such as personal computers) in its creation. It includes both music made using electronic and electromechanical means (electroacoustic music). Pure electronic instruments depend entirely on circuitry-based sound generation, for instance using devices such as an electronic oscillator, theremin, or synthesizer: no acoustic waves need to be previously generated by mechanical means and then converted into electrical signals. On the other hand, electromechanical instruments have mechanical parts such as strings or hammers that generate the sound waves, together with electric elements including magnetic pickups, power amplifiers and loudspeakers that convert the acoustic waves into electrical signals, process them and convert them back into sound waves. Such electromechanical devices include the telharmonium, Hammond organ, electric piano and electric guitar.

The first electronic musical devices were developed at the end of the 19th century. During the 1920s and 1930s, some electronic instruments were introduced and the first compositions featuring them were written. By the 1940s, magnetic audio tape allowed musicians to tape sounds and then modify them by changing the tape speed or direction, leading to the development of electroacoustic tape music in the 1940s in Egypt and France. Musique concrète, created in Paris in 1948, was based on editing together recorded fragments of natural and industrial sounds. Music produced solely from electronic generators was first produced in Germany in 1953 by Karlheinz Stockhausen. Electronic music was also created in Japan and the United States beginning in the 1950s and algorithmic composition with computers was first demonstrated in the same decade.

↑ Return to Menu

Electronic oscillator in the context of Gravitational redshift

In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift (a type of blueshift). The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity. Observing the gravitational redshift in the Solar System is one of the classical tests of general relativity.

Gravitational redshift can be interpreted as a consequence of the equivalence principle (that gravitational effects are locally equivalent to inertial effects and the redshift is caused by the Doppler effect) or as a consequence of the mass–energy equivalence and conservation of energy ('falling' photons gain energy), though there are numerous subtleties that complicate a rigorous derivation. A gravitational redshift can also equivalently be interpreted as gravitational time dilation at the source of the radiation: if two oscillators (attached to transmitters producing electromagnetic radiation) are operating at different gravitational potentials, the oscillator at the higher gravitational potential (farther from the attracting body) will tick faster; that is, when observed from the same location, it will have a higher measured frequency than the oscillator at the lower gravitational potential (closer to the attracting body).

↑ Return to Menu

Electronic oscillator in the context of Electronic component

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

↑ Return to Menu

Electronic oscillator in the context of Quartz clock

Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. The crystal oscillator, controlled by the resonant mechanical vibrations of the quartz crystal, creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds.

As the advent of solid-state digital electronics in the 1980s allowed them to be made more compact and inexpensive, quartz timekeepers became the world's most widely used timekeeping technology, used in most clocks and watches as well as computers and other appliances that keep time.

↑ Return to Menu

Electronic oscillator in the context of Audion

The Audion is an electronic detecting or amplifying vacuum tube invented by American electrical engineer Lee de Forest as a diode in 1906. Improved, it was patented as the first triode in 1908, consisting of an evacuated glass tube containing three electrodes: a heated filament (the cathode, made out of tantalum), a grid, and a plate (the anode). It is important in the history of technology because it was the first widely used electronic device that could amplify. A low power signal at the grid could control much more power in the plate circuit.

Audions had more residual gas than later vacuum tubes; the residual gas limited the dynamic range and gave the Audion non-linear characteristics and erratic performance. Originally developed as a radio receiver detector by adding a grid electrode to the Fleming valve, it found little use until its amplifying ability was recognized around 1912 by several researchers, who used it to build the first amplifying radio receivers and electronic oscillators. The many practical applications for amplification motivated its rapid development, and the original Audion was superseded within a few years by improved versions with a higher vacuum.

↑ Return to Menu

Electronic oscillator in the context of Cavity resonator

A microwave cavity or radio frequency cavity (RF cavity) is a special type of resonator, consisting of a closed (or largely closed) metal structure that confines electromagnetic fields in the microwave or RF region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.

A microwave cavity acts similarly to a resonant circuit with extremely low loss at its frequency of operation, resulting in quality factors (Q factors) up to the order of 10, for copper cavities, compared to 10 for circuits made with separate inductors and capacitors at the same frequency. For superconducting cavities, quality factors up to the order of 10 are possible. They are used in place of resonant circuits at microwave frequencies, since at these frequencies discrete resonant circuits cannot be built because the values of inductance and capacitance needed are too low. They are used in oscillators and transmitters to create microwave signals, and as filters to separate a signal at a given frequency from other signals, in equipment such as radar equipment, microwave relay stations, satellite communications, and microwave ovens.

↑ Return to Menu