Electron neutrino in the context of "CNO cycle"

Play Trivia Questions online!

or

Skip to study material about Electron neutrino in the context of "CNO cycle"

Ad spacer

⭐ Core Definition: Electron neutrino

The electron neutrino (ν
e
) is an elementary particle which has zero electric charge and a spin of 12. Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Electron neutrino in the context of Particle physics

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics.

The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

↑ Return to Menu

Electron neutrino in the context of Weak interaction

In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavordynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).

The effective range of the weak force is limited to subatomic distances and is less than the diameter of a proton.

↑ Return to Menu

Electron neutrino in the context of Lepton

In particle physics, a lepton is an elementary particle of half-integer spin (spin 1/2) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

There are six types of leptons, known as flavours, grouped in three generations. The first-generation leptons, also called electronic leptons, comprise the electron (e
) and the electron neutrino (ν
e
); the second are the muonic leptons, comprising the muon (μ
) and the muon neutrino (ν
μ
); and the third are the tauonic leptons, comprising the tau (τ
) and the tau neutrino (ν
τ
). Electrons have the least mass of all the charged leptons. The heavier muons and taus will rapidly change into electrons and neutrinos through a process of particle decay: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the universe, whereas muons and taus can only be produced in high-energy collisions (such as those involving cosmic rays and those carried out in particle accelerators).

↑ Return to Menu

Electron neutrino in the context of Neutron radiation

Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an electron antineutrino. Free neutrons have a mean lifetime of 887 seconds (14 minutes, 47 seconds).

Neutron radiation is distinct from alpha, beta and gamma radiation.

↑ Return to Menu