Electron gun in the context of "Klystron"

Play Trivia Questions online!

or

Skip to study material about Electron gun in the context of "Klystron"

Ad spacer

⭐ Core Definition: Electron gun

An electron gun (also called electron emitter) is an electrical component in some vacuum tubes that produces a narrow, collimated electron beam that has a precise kinetic energy.

The largest use is in cathode-ray tubes (CRTs), used in older television sets, computer displays and oscilloscopes, before the advent of flat-panel displays. Electron guns are also used in field-emission displays (FEDs), which are essentially flat-panel displays made out of rows of extremely small cathode-ray tubes. They are also used in microwave linear beam vacuum tubes such as klystrons, inductive output tubes, travelling-wave tubes, and gyrotrons, as well as in scientific instruments such as electron microscopes and particle accelerators.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Electron gun in the context of Cathode-ray tube

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

In CRT TVs and computer monitors, the entire front area of the tube is scanned repeatedly and systematically in a fixed pattern called a raster. In color devices, an image is produced by controlling the intensity of each of three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference. In modern CRT monitors and TVs the beams are bent by magnetic deflection, using a deflection yoke. Electrostatic deflection is commonly used in oscilloscopes.

↑ Return to Menu

Electron gun in the context of Hot cathode

In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.

From the 1920s to the 1960s, a wide variety of electronic devices used hot-cathode vacuum tubes. Today, hot cathodes are used as the source of electrons in fluorescent lamps, vacuum tubes, and the electron guns used in cathode-ray tubes and laboratory equipment such as electron microscopes.

↑ Return to Menu

Electron gun in the context of Electret

An electret (formed as a portmanteau of electr- from "electricity" and -et from "magnet") is a dielectric material that has a quasi-permanent electrical polarisation. An electret has internal and external electric fields, and is the electrostatic equivalent of a permanent magnet.

The term electret was coined by Oliver Heaviside for a (typically dielectric) material which has electrical charges of opposite sign at its extremities. Some materials with electret properties were already known to science and had been studied since the early 1700s. One example is the electrophorus, a device consisting of a slab with electret properties and a separate metal plate. The electrophorus was originally invented by Johan Carl Wilcke in Sweden in 1762 and improved by Alessandro Volta in Italy in 1775. The first documented case of production was by Mototarô Eguchi in 1925 who melted a suitable dielectric material such as a polymer or wax that contained polar molecules, and then allowed it to solidify in a powerful electric field. The polar molecules of the dielectric align themselves to the direction of the electric field, producing a dipole electret with a quasi-permanent polarization. Modern electrets are sometimes made by embedding excess charges into a highly insulating dielectric, e.g. using an electron beam, corona discharge, injection from an electron gun, electric breakdown across a gap, or a dielectric barrier.

↑ Return to Menu

Electron gun in the context of Traveling-wave tube

A traveling-wave tube (TWT, pronounced "twit") or traveling-wave tube amplifier (TWTA, pronounced "tweeta") is a specialized vacuum tube that is used in electronics to amplify radio frequency (RF) signals in the microwave range. It was invented by Andrei Haeff around 1933 as a graduate student at Caltech, and its present form was invented by Rudolf Kompfner in 1942–43. The TWT belongs to a category of "linear beam" tubes, such as the klystron, in which the radio wave is amplified by absorbing power from a beam of electrons as it passes down the tube. Although there are various types of TWT, two major categories are:

  • Helix TWT - in which the radio waves interact with the electron beam while traveling down a wire helix which surrounds the beam. These have wide bandwidth, but output power is limited to a few hundred watts.
  • Coupled cavity TWT - in which the radio wave interacts with the beam in a series of cavity resonators through which the beam passes. These function as narrowband power amplifiers.

A major advantage of the TWT over some other microwave tubes is its ability to amplify a wide range of frequencies i.e. a large bandwidth. The bandwidth of the helix TWT can be as high as two octaves, while the cavity versions have bandwidths of 10–20%. Operating frequencies range from 300 MHz to 50 GHz. The power gain of the tube is on the order of 40 to 70 decibels, and output power ranges from a few watts to megawatts.

↑ Return to Menu