Electromagnetic compatibility in the context of Electromagnetic interference


Electromagnetic compatibility in the context of Electromagnetic interference

Electromagnetic compatibility Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Electromagnetic compatibility in the context of "Electromagnetic interference"


⭐ Core Definition: Electromagnetic compatibility

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage to operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

EMC pursues three main classes of issue. Emission is the generation of electromagnetic energy, whether deliberate or accidental, by some source and its release into the environment. EMC studies the unwanted emissions and the countermeasures which may be taken in order to reduce unwanted emissions. The second class, susceptibility, is the tendency of electrical equipment, referred to as the victim, to malfunction or break down in the presence of unwanted emissions, which are known as Radio frequency interference (RFI). Immunity is the opposite of susceptibility, being the ability of equipment to function correctly in the presence of RFI, with the discipline of "hardening" equipment being known equally as susceptibility or immunity. A third class studied is coupling, which is the mechanism by which emitted interference reaches the victim.

↓ Menu
HINT:

In this Dossier

Electromagnetic compatibility in the context of Electromagnetic pulse

An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering.

The first recorded damage from an electromagnetic pulse came with the solar storm of August 1859, or the Carrington Event.

View the full Wikipedia page for Electromagnetic pulse
↑ Return to Menu

Electromagnetic compatibility in the context of Twisted-pair

Twisted pair cabling is a type of communications cable in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pair reduces electromagnetic radiation from the pair and crosstalk between neighboring pairs and improves rejection of external electromagnetic interference. It was invented by Alexander Graham Bell.

For additional noise immunity, twisted-pair cabling may be shielded. Cable with shielding is known as shielded twisted pair (STP) and without as unshielded twisted pair (UTP).

View the full Wikipedia page for Twisted-pair
↑ Return to Menu

Electromagnetic compatibility in the context of Shielded cable

A shielded cable or screened cable is an electrical cable that has a common conductive layer around its conductors for electromagnetic shielding. This shield is usually covered by an outermost layer of the cable. Common types of cable shielding can most broadly be categorized as foil type (often utilizing a metallised film), contraspiralling wire strands (braided or unbraided) or both.A longitudinal wire may be necessary with dielectric spiral foils to short out each turn.

The shield acts as a Faraday cage – a surface that reflects electromagnetic radiation. This reduces both the interference from outside noise onto the signals and the signals from radiating out and potentially disturbing other devices (see electromagnetic compatibility). To be effective against electric fields (see also capacitive coupling), the shield must be grounded. The shield should be electrically continuous to maximize effectiveness, including any cable splices. For high frequency signals (above a few megahertz), this extends to connectors and enclosures, also circumferentially: The cable shielding needs to be circumferentially connected to the enclosure, if any, through the connector or cable gland.

View the full Wikipedia page for Shielded cable
↑ Return to Menu

Electromagnetic compatibility in the context of Computational electromagnetics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space. A large subfield is antenna modeling computer programs, which calculate the radiation pattern and electrical properties of radio antennas, and are widely used to design antennas for specific applications.

View the full Wikipedia page for Computational electromagnetics
↑ Return to Menu