Electroencephalography in the context of Time sequence


Electroencephalography in the context of Time sequence

Electroencephalography Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Electroencephalography in the context of "Time sequence"


⭐ Core Definition: Electroencephalography

Electroencephalography (EEG)is a method to record an electrogram of the spontaneous electrical activity of the brain. The bio signals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG". Clinical interpretation of EEG recordings is most often performed by visual inspection of the tracing or quantitative EEG analysis.

Voltage fluctuations measured by the EEG bio amplifier and electrodes allow the evaluation of normal brain activity. As the electrical activity monitored by EEG originates in neurons in the underlying brain tissue, the recordings made by the electrodes on the surface of the scalp vary in accordance with their orientation and distance to the source of the activity. Furthermore, the value recorded is distorted by intermediary tissues and bones, which act in a manner akin to resistors and capacitors in an electrical circuit. This means that not all neurons will contribute equally to an EEG signal, with an EEG predominately reflecting the activity of cortical neurons near the electrodes on the scalp. Deep structures within the brain further away from the electrodes will not contribute directly to an EEG; these include the base of the cortical gyrus, medial walls of the major lobes, hippocampus, thalamus, and brain stem.

↓ Menu
HINT:

In this Dossier

Electroencephalography in the context of Medical imaging

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

Measurement and recording techniques that are not primarily designed to produce images, such as electroencephalography (EEG), magnetoencephalography (MEG), electrocardiography (ECG), and others, represent other technologies that produce data susceptible to representation as a parameter graph versus time or maps that contain data about the measurement locations. In a limited comparison, these technologies can be considered forms of medical imaging in another discipline of medical instrumentation.

View the full Wikipedia page for Medical imaging
↑ Return to Menu

Electroencephalography in the context of Epilepsy

Epilepsy is a group of neurological disorders characterized by a tendency for recurrent, unprovoked seizures. A seizure is a sudden burst of abnormal electrical activity in the brain that can cause a variety of symptoms, ranging from brief lapses of awareness or muscle jerks to prolonged convulsions. These episodes can result in physical injuries, either directly, such as broken bones, or through causing accidents. The diagnosis of epilepsy typically requires at least two unprovoked seizures occurring more than 24 hours apart. In some cases, however, it may be diagnosed after a single unprovoked seizure if clinical evidence suggests a high risk of recurrence. Isolated seizures that occur without recurrence risk or are provoked by identifiable causes are not considered indicative of epilepsy.

The underlying cause is often unknown, but epilepsy can result from brain injury, stroke, infections, tumors, Cavernous hemangiomas, genetic conditions, or developmental abnormalities. Epilepsy that occurs as a result of other issues may be preventable. Diagnosis involves ruling out other conditions that can resemble seizures, and may include neuroimaging, blood tests, and electroencephalography (EEG).

View the full Wikipedia page for Epilepsy
↑ Return to Menu

Electroencephalography in the context of Large-scale brain networks

Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.

The set of identified brain areas that are linked together in a large-scale network varies with cognitive function. When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a resting state network (RSN). As a physical system with graph-like properties, a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from graph theory and dynamical systems.

View the full Wikipedia page for Large-scale brain networks
↑ Return to Menu

Electroencephalography in the context of Time series

In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average.

A time series is very frequently plotted via a run chart (which is a temporal line chart). Time series are used in statistics, actuarial science, signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, earthquake prediction, electroencephalography, control engineering, astronomy, communications engineering, and largely in any domain of applied science and engineering which involves temporal measurements.

View the full Wikipedia page for Time series
↑ Return to Menu

Electroencephalography in the context of Alfred Lee Loomis

Alfred Lee Loomis (November 4, 1887 – August 11, 1975) was an American attorney, investment banker, philanthropist, scientist, physicist, inventor of the LORAN Long Range Navigation System and a lifelong patron of scientific research. He established the Loomis Laboratory in Tuxedo Park, New York, and his role in the development of radar and the atomic bomb contributed to the Allied victory in World War II. He invented the Aberdeen Chronograph for measuring muzzle velocities, contributed significantly (perhaps critically, according to Luis Alvarez) to the development of a ground-controlled approach technology for aircraft, and participated in preliminary meetings of the Manhattan Project.

Loomis also made contributions to biological instrumentation. Working with E. Newton Harvey he co-invented the microscope centrifuge, and pioneered techniques for electroencephalography. In 1937, he discovered the sleep K-complex brainwave. During the Great Depression, Loomis anonymously paid the Physical Review journal's fees for authors who could not afford them.

View the full Wikipedia page for Alfred Lee Loomis
↑ Return to Menu

Electroencephalography in the context of Polysomnography

Polysomnography (PSG) is a multi-parameter type of sleep study and a diagnostic tool in sleep medicine. The test result is called a polysomnogram, also abbreviated PSG. The name is derived from Greek and Latin roots: the Greek πολύς (polus for "many, much", indicating many channels), the Latin somnus ("sleep"), and the Greek γράφειν (graphein, "to write").

Type I polysomnography is a sleep study performed overnight with the patient continuously monitored by a credentialed technologist. It records the physiological changes that occur during sleep, usually at night, though some labs can accommodate shift workers and people with circadian rhythm sleep disorders who sleep at other times. The PSG monitors many body functions, including brain activity (EEG), eye movements (EOG), muscle activity or skeletal muscle activation (EMG), and heart rhythm (ECG). After the identification of the sleep disorder sleep apnea in the 1970s, breathing functions, respiratory airflow, and respiratory effort indicators were added along with peripheral pulse oximetry. Polysomnography no longer includes NPT monitoring for erectile dysfunction, as it is reported that all male patients will experience erections during phasic REM sleep, regardless of dream content.

View the full Wikipedia page for Polysomnography
↑ Return to Menu

Electroencephalography in the context of Electrophysiology

Electrophysiology (from Ancient Greek: ἤλεκτρον, romanizedēlektron, lit.'amber' [see the etymology of "electron"]; φύσις, physis, 'nature, origin'; and -λογία, -logia) is the branch of physiology that studies the electrical properties of biological cells and tissues. It involves measurements of voltage changes or electric current or manipulations on a wide variety of scales from single ion channel proteins to whole organs like the heart. In neuroscience, it includes measurements of the electrical activity of neurons, and, in particular, action potential activity. Recordings of large-scale electric signals from the nervous system, such as electroencephalography, may also be referred to as electrophysiological recordings. They are useful for electrodiagnosis and monitoring.

View the full Wikipedia page for Electrophysiology
↑ Return to Menu

Electroencephalography in the context of Neural oscillation

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

Neural oscillations in humans were observed by researchers as early as 1924 (by Hans Berger). More than 50 years later, intrinsic oscillatory behavior was encountered in vertebrate neurons, but its functional role is still not fully understood. The possible roles of neural oscillations include feature binding, information transfer mechanisms and the generation of rhythmic motor output. Over the last decades more insight has been gained, especially with advances in brain imaging. A major area of research in neuroscience involves determining how oscillations are generated and what their roles are. Oscillatory activity in the brain is widely observed at different levels of organization and is thought to play a key role in processing neural information. Numerous experimental studies support a functional role of neural oscillations; a unified interpretation, however, is still lacking.

View the full Wikipedia page for Neural oscillation
↑ Return to Menu

Electroencephalography in the context of Rapid eye movement sleep

Rapid eye movement sleep (REM sleep or REMS) is a unique phase of sleep in mammals (including humans) and birds, characterized by random rapid movement of the eyes, accompanied by low muscle tone throughout the body, and the propensity of the sleeper to dream vividly. The core body and brain temperatures increase during REM sleep and skin temperature decreases to lowest values.

The REM phase is also known as paradoxical sleep (PS) and sometimes desynchronized sleep or dreamy sleep, because of physiological similarities to waking states including rapid, low-voltage desynchronized brain waves. Electrical and chemical activity regulating this phase seem to originate in the brain stem, and is characterized most notably by an abundance of the neurotransmitter acetylcholine, combined with a nearly complete absence of monoamine neurotransmitters histamine, serotonin and norepinephrine. Experiences of REM sleep are not transferred to permanent memory due to absence of norepinephrine.

View the full Wikipedia page for Rapid eye movement sleep
↑ Return to Menu

Electroencephalography in the context of Slow-wave sleep

Slow-wave sleep (SWS), often referred to as deep sleep, is the third stage of non-rapid eye movement sleep (NREM), where electroencephalography activity is characterised by slow delta waves.

Slow-wave sleep usually lasts between 70 and 90 minutes, taking place during the first hours of the night. Slow-wave sleep is characterised by moderate muscle tone, slow or absent eye movement, and lack of genital activity. Slow-wave sleep is considered important for memory consolidation, declarative memory, and the recovery of the brain from daily activities.

View the full Wikipedia page for Slow-wave sleep
↑ Return to Menu

Electroencephalography in the context of Electrocorticography

Electrocorticography (ECoG), a type of intracranial electroencephalography (iEEG), is a type of electrophysiological monitoring that uses electrodes placed directly on the exposed surface of the brain to record electrical activity from the cerebral cortex. In contrast, conventional electroencephalography (EEG) electrodes monitor this activity from outside the skull. ECoG may be performed either in the operating room during surgery (intraoperative ECoG) or outside of surgery (extraoperative ECoG). Because a craniotomy (a surgical incision into the skull) is required to implant the electrode grid, ECoG is an invasive procedure.

View the full Wikipedia page for Electrocorticography
↑ Return to Menu

Electroencephalography in the context of Quantitative EEG

Quantitative electroencephalography (qEEG or QEEG) is a field concerned with the numerical analysis of electroencephalography (EEG) data and associated behavioral correlates.

View the full Wikipedia page for Quantitative EEG
↑ Return to Menu

Electroencephalography in the context of Neurofeedback

Neurofeedback is a form of biofeedback that uses electrical potentials in the brain to reinforce desired brain states through operant conditioning. This process is non-invasive neurotherapy and typically collects brain activity data using electroencephalography (EEG). Several neurofeedback protocols exist, with potential additional benefit from use of quantitative electroencephalography (QEEG) or functional magnetic resonance imaging (fMRI) to localize and personalize treatment. Related technologies include functional near-infrared spectroscopy-mediated (fNIRS) neurofeedback, hemoencephalography biofeedback (HEG), and fMRI biofeedback.

The evidence for neurofeedback's effectiveness is weak; placebo effects may play a role in treatment outcomes.

View the full Wikipedia page for Neurofeedback
↑ Return to Menu