Electricity market in the context of "Electrical energy"

Play Trivia Questions online!

or

Skip to study material about Electricity market in the context of "Electrical energy"

Ad spacer

⭐ Core Definition: Electricity market

An electricity market is a system that enables the exchange of electrical energy through an electrical grid. Historically, electricity has been primarily sold by companies that operate electric generators, purchased by electricity retailers, and sold to customers.

The electric power industry began in the late 19th and early 20th centuries in the United States and United Kingdom. Throughout the 20th century, and up to the present, many countries have made changes to their system of supplying and/or purchasing electricity. Change has been driven by many factors, ranging from technological advances (on both the supply and demand side) to politics and ideology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Electricity market in the context of Electric utility

An electric utility, or a power company, is a company in the electric power industry (often a public utility) that engages in electricity generation and distribution of electricity for sale generally in a regulated market. Electric utilities are major providers of energy in most countries.

Electric utilities include investor owned, publicly owned, cooperatives, and nationalized entities. They may be engaged in all or only some aspects of the industry. Electricity markets are also considered electric utilities—these entities buy and sell electricity, acting as brokers, but usually do not own or operate generation, transmission, or distribution facilities. Utilities are regulated by local and national authorities.

↑ Return to Menu

Electricity market in the context of Electrical grid

An electrical grid (or electricity network) is an interconnected network for electricity delivery from producers to consumers. Electrical grids consist of power stations, electrical substations to step voltage up or down, electric power transmission to carry power over long distances, and finally electric power distribution to customers. In that last step, voltage is stepped down again to the required service voltage. Power stations are typically built close to energy sources and far from densely populated areas. Electrical grids vary in size and can cover whole countries or continents. From small to large there are microgrids, wide area synchronous grids, and super grids. The combined transmission and distribution network is part of electricity delivery, known as the power grid.

Grids are nearly always synchronous, meaning all distribution areas operate with three phase alternating current (AC) frequencies synchronized (so that voltage swings occur at almost the same time). This allows transmission of AC power throughout the area, connecting the electricity generators with consumers. Grids can enable more efficient electricity markets.

↑ Return to Menu

Electricity market in the context of Photovoltaic power station

A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power. They are different from most building-mounted and other decentralized solar power because they supply power at the utility level, rather than to a local user or users. Utility-scale solar is sometimes used to describe this type of project.

This approach differs from concentrated solar power, the other major large-scale solar generation technology, which uses heat to drive a variety of conventional generator systems. Both approaches have their own advantages and disadvantages, but to date, for a variety of reasons, photovoltaic technology has seen much wider use. As of 2019, about 97% of utility-scale solar power capacity was PV.

↑ Return to Menu

Electricity market in the context of Wide area synchronous grid

A wide area synchronous grid (also called an "interconnection" in North America) is a three-phase electric power grid that has regional scale or greater that operates at a synchronized utility frequency and is electrically tied together during normal system conditions. Also known as synchronous zones, the most powerful is the Northern Chinese State Grid with 1,700 gigawatts (GW) of generation capacity, while the widest region served is that of the IPS/UPS system serving most countries of the former Soviet Union. Synchronous grids with ample capacity facilitate electricity trading across wide areas. In the CESA system in 2008, over 350,000 megawatt hours were sold per day on the European Energy Exchange (EEX).

Neighbouring interconnections with the same frequency and standards can be synchronized and directly connected to form a larger interconnection, or they may share power without synchronization via high-voltage direct current power transmission lines (DC ties), solid-state transformers or variable-frequency transformers (VFTs), which permit a controlled flow of energy while also functionally isolating the independent AC frequencies of each side. Each of the interconnects in North America is synchronized at a nominal 60 Hz, while those of Europe run at 50 Hz.

↑ Return to Menu