Electrical impedance in the context of Electrical element


Electrical impedance in the context of Electrical element

Electrical impedance Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Electrical impedance in the context of "Electrical element"


⭐ Core Definition: Electrical impedance

In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. In general, it depends upon the frequency of the sinusoidal voltage.

↓ Menu
HINT:

In this Dossier

Electrical impedance in the context of Siemens (unit)

The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω) and is also referred to as the mho. The siemens was adopted by the IEC in 1935, and the 14th General Conference on Weights and Measures approved the addition of the siemens as a derived unit in 1971.

The unit is named after Ernst Werner von Siemens. In English, the same word siemens is used both for the singular and plural. Like other SI units named after people, the name of the unit (siemens) is not capitalized. Its symbol (S), however, is capitalized to distinguish it from the second, whose symbol (s) is lower case.

View the full Wikipedia page for Siemens (unit)
↑ Return to Menu

Electrical impedance in the context of Thermal noise

Johnson–Nyquist noise (thermal noise, Johnson noise, or Nyquist noise) is the voltage or current noise generated by the thermal agitation of the charge carriers (usually the electrons) inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment (such as radio receivers) can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise is proportional to absolute temperature, so some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to improve their signal-to-noise ratio. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.

Thermal noise in an ideal resistor is approximately white, meaning that its power spectral density is nearly constant throughout the frequency spectrum (Figure 2). When limited to a finite bandwidth and viewed in the time domain (as sketched in Figure 1), thermal noise has a nearly Gaussian amplitude distribution.

View the full Wikipedia page for Thermal noise
↑ Return to Menu

Electrical impedance in the context of Balanced pair

In telecommunications and professional audio, a balanced line or balanced signal pair is an electrical circuit consisting of two conductors of the same type, both of which have equal impedances along their lengths, to ground, and to other circuits. The primary advantage of the balanced line format is good rejection of common-mode noise and interference when fed to a differential device such as a transformer or differential amplifier.

As prevalent in sound recording and reproduction, balanced lines are referred to as balanced audio.

View the full Wikipedia page for Balanced pair
↑ Return to Menu

Electrical impedance in the context of Via (electronics)

A via (Latin, 'path' or 'way') is an electrical connection between two or more metal layers of a printed circuit boards (PCB) or integrated circuit. Essentially a via is a small drilled hole that goes through two or more adjacent layers; the hole is plated with metal (often copper) that forms an electrical connection through the insulating layers.

Vias are an important concern in PCB manufacturing. As vertical structures crossing multiple layers, they are specified differently from most of the design, which increases the chance for errors. They place the strictest demands on registration (how closely aligned different layers are). They are manufactured with different tooling from other features -- tooling that typically has looser tolerances. If either the hole or any layer is slightly out of place, the wrong electrical connections may be made; this may not be visible from the surface. After the hole is drilled, it must also be lined with conductive material, as opposed to simply leaving conductive material in place on copper layers. Even an initially good board may develop problems later because the via reacts to heat differently from the substrate around it. Vias also represent a discontinuity in the electrical impedance, which can cause problems for signal integrity.

View the full Wikipedia page for Via (electronics)
↑ Return to Menu

Electrical impedance in the context of Electrical load

An electrical load is an electrical component or portion of a circuit that consumes (active) electric power, such as electrical appliances and lights inside the home. The term may also refer to the power consumed by a circuit. This is opposed to a power supply source, such as a battery or generator, which provides power.

The term is used more broadly in electronics for a device connected to a signal source, whether or not it consumes power. If an electric circuit has an output port, a pair of terminals that produces an electrical signal, the circuit connected to this terminal (or its input impedance) is the load. For example, if a CD player is connected to an amplifier, the CD player is the source, and the amplifier is the load, and to continue the concept, if loudspeakers are connected to that amplifier, then that amplifier becomes a new, second source (to the loudspeakers), and the loudspeakers will be the load for the amplifier (but not for the CD player, there are two separate sources and two separate loads, chained together in series).

View the full Wikipedia page for Electrical load
↑ Return to Menu

Electrical impedance in the context of Acoustic impedance

Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cubic metre (symbol Pa·s/m), or in the MKS system the rayl per square metre (Rayl/m), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system.

View the full Wikipedia page for Acoustic impedance
↑ Return to Menu

Electrical impedance in the context of Voltage source

A voltage source is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. However, a real-world voltage source cannot supply unlimited current.

A voltage source is the dual of a current source. Real-world sources of electrical energy, such as batteries and generators, can be modeled for analysis purposes as a combination of an ideal voltage source and additional combinations of impedance elements.

View the full Wikipedia page for Voltage source
↑ Return to Menu

Electrical impedance in the context of Short circuit

A short circuit (sometimes abbreviated to "short" or "s/c") is an electrical circuit that allows an electric current to travel along an unintended path with no or very low electrical impedance. This results in an excessive current flowing through the circuit.

The opposite of a short circuit is an open circuit, which is an infinite resistance (or very high impedance) between two nodes.

View the full Wikipedia page for Short circuit
↑ Return to Menu

Electrical impedance in the context of Transposition tower

In electrical power transmission, a transposition tower is a transmission tower that changes the relative physical positions of the conductors of a transmission line in a Polyphase system. A transposition tower allows these sections to be connected together, while maintaining adequate clearance for the conductors. This is important since it distributes electrical impedances between phases of a circuit over time, reducing the problem of one conductor carrying more current than others.

Double-circuit lines are usually set up with conductors of the same phase placed opposite each other. For example, a section of a line may be (top-to-bottom) phases A-B-C on the left, also phases C'-B'-A' on the right. The next section may be B-C-A on the left, also A'-C'-B' on the right. Therefore, the rotation on each side of the tower will be opposite. Transposition helps to reduce the mutual coupling between conductors and between conductors and ground. It also useful in mitigating issues like induced voltages in nearby telephone lines.

View the full Wikipedia page for Transposition tower
↑ Return to Menu

Electrical impedance in the context of Negative resistance

In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.

This is in contrast to an ordinary resistor, in which an increase in applied voltage causes a proportional increase in current in accordance with Ohm's law, resulting in a positive resistance. Under certain conditions, negative resistance can increase the power of an electrical signal, amplifying it.

View the full Wikipedia page for Negative resistance
↑ Return to Menu

Electrical impedance in the context of Electrical resonance

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

Resonant circuits exhibit ringing and can generate higher voltages or currents than are fed into them. They are widely used in wireless (radio) transmission for both transmission and reception.

View the full Wikipedia page for Electrical resonance
↑ Return to Menu

Electrical impedance in the context of Susceptance

In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).

View the full Wikipedia page for Susceptance
↑ Return to Menu

Electrical impedance in the context of Admittance

In electrical engineering, admittance is a measure of how easily a circuit or device will allow a current to flow. It is defined as the reciprocal of impedance, analogous to how conductance and resistance are defined. The SI unit of admittance is the siemens (symbol S); the older, synonymous unit is mho, and its symbol is ℧ (an upside-down uppercase omega Ω). Oliver Heaviside coined the term admittance in December 1887. Heaviside used Y to represent the magnitude of admittance, but it quickly became the conventional symbol for admittance itself through the publications of Charles Proteus Steinmetz. Heaviside probably chose Y simply because it is next to Z in the alphabet, the conventional symbol for impedance.

Admittance Y, measured in siemens, is defined as the inverse of impedance Z, measured in ohms:

View the full Wikipedia page for Admittance
↑ Return to Menu

Electrical impedance in the context of Electrical reactance

In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. It is measured in ohms. Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy is returned to the circuit. Greater reactance gives smaller current for the same applied voltage.

Reactance is used to compute amplitude and phase changes of sinusoidal alternating current going through a circuit element. Like resistance, reactance is measured in ohms, with positive values indicating inductive reactance and negative indicating capacitive reactance. It is denoted by the symbol . An ideal resistor has zero reactance, whereas ideal reactors have no shunt conductance and no series resistance. As frequency increases, inductive reactance increases and capacitive reactance decreases.

View the full Wikipedia page for Electrical reactance
↑ Return to Menu

Electrical impedance in the context of Fluctuation-dissipation theorem

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance (in their general sense, not only in electromagnetic terms) of the same physical variable (like voltage, temperature difference, etc.), and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

The fluctuation–dissipation theorem was proven by Herbert Callen and Theodore Welton in 1951and expanded by Ryogo Kubo. There are antecedents to the general theorem, including Einstein's explanation of Brownian motionduring his annus mirabilis and Harry Nyquist's explanation in 1928 of Johnson noise in electrical resistors.

View the full Wikipedia page for Fluctuation-dissipation theorem
↑ Return to Menu

Electrical impedance in the context of Transmission line model

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a wave travelling in one direction along the line in the absence of reflections in the other direction. Equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

The characteristic impedance of a lossless transmission line is purely real, with no reactive component (see below). Energy supplied by a source at one end of such a line is transmitted through the line without being dissipated in the line itself. A transmission line of finite length (lossless or lossy) that is terminated at one end with an impedance equal to the characteristic impedance appears to the source like an infinitely long transmission line and produces no reflections.

View the full Wikipedia page for Transmission line model
↑ Return to Menu

Electrical impedance in the context of Antenna tuning unit

An antenna tuner, a matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, or feedline coupler is a device connected between a radio transmitter or receiver and its antenna to improve power transfer between them by matching the impedance of the radio RF port (coaxial or waveguide) to the antenna's feedline. Antenna tuners are particularly important for use with transmitters. Transmitters feed power into a resistive load, very often 50 ohms, for which the transmitter is optimally designed for power output, efficiency, and low distortion. If the load seen by the transmitter departs from this design value due to improper tuning of the antenna/feedline combination the power output will change, distortion may occur and the transmitter may overheat.

ATUs are a standard part of almost all radio transmitters; they may be a circuit included inside the transmitter itself or a separate piece of equipment connected between the transmitter and the antenna. In transmitters in which the antenna is mounted separate from the transmitter and connected to it by a transmission line (feedline), there may be a second ATU (or matching network) at the antenna to match the impedance of the antenna to the transmission line. In low power transmitters with attached antennas, such as cell phones and walkie-talkies, the ATU is fixed to work with the antenna. In high power transmitters like radio stations, the ATU is adjustable to accommodate changes in the antenna or transmitter, and adjusting the ATU to match the transmitter to the antenna is an important procedure done after any changes to these components have been made. This adjustment is done with an instrument called a SWR meter.

View the full Wikipedia page for Antenna tuning unit
↑ Return to Menu