Electrical cable in the context of Insulator (electrical)


Electrical cable in the context of Insulator (electrical)

Electrical cable Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Electrical cable in the context of "Insulator (electrical)"


⭐ Core Definition: Electrical cable

An electrical cable is an assembly of one or more wires running side by side or bundled, which is used as an electrical conductor to carry electric current.

Electrical cables are used to connect two or more devices, enabling the transfer of electrical signals, power, or both from one device to the other. Physically, an electrical cable is an assembly consisting of one or more conductors with their own insulations and optional screens, individual coverings, assembly protection and protective covering.

↓ Menu
HINT:

In this Dossier

Electrical cable in the context of Insulator (electricity)

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

A perfect insulator does not exist because even the materials used as insulators contain small numbers of mobile charges (charge carriers) which can carry current. In addition, all insulators become electrically conductive when a sufficiently large voltage is applied that the electric field tears electrons away from the atoms. This is known as electrical breakdown, and the voltage at which it occurs is called the breakdown voltage of an insulator. Some materials such as glass, paper and PTFE, which have high resistivity, are very good electrical insulators. A much larger class of materials, even though they may have lower bulk resistivity, are still good enough to prevent significant current from flowing at normally used voltages, and thus are employed as insulation for electrical wiring and cables. Examples include rubber-like polymers and most plastics which can be thermoset or thermoplastic in nature.

View the full Wikipedia page for Insulator (electricity)
↑ Return to Menu

Electrical cable in the context of Coaxial cable

Coaxial cable, or coax (pronounced /ˈk.æks/), is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric (insulating material); many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.

Coaxial cable is a type of unbalanced transmission line, used to carry high-frequency unbalanced electrical signals with low losses. It is used in such applications as telephone trunk lines, broadband internet networking cables, high-speed computer data buses, cable television signals, and connecting radio transmitters and receivers to their antennas. It differs from other shielded cables because the dimensions of the cable and connectors are controlled to give a precise, constant conductor spacing, which is needed for it to function efficiently as a transmission line.

View the full Wikipedia page for Coaxial cable
↑ Return to Menu

Electrical cable in the context of Fiber-optic cable

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for fiber-optic communication in different applications, for example long-distance telecommunication or providing a high-speed data connection between different parts of a building.

View the full Wikipedia page for Fiber-optic cable
↑ Return to Menu

Electrical cable in the context of Telephone

A telephone, commonly shortened to phone, is a telecommunications device that enables two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into electronic signals that are transmitted via cables and other communication channels to another telephone which reproduces the sound to the receiving user. The term is derived from Ancient Greek: τῆλε, romanizedtēle, lit.'far' and φωνή (phōnē, voice), together meaning distant voice.

In 1876, Alexander Graham Bell was the first to be granted a United States patent for a device that produced clearly intelligible replication of the human voice at a second device. This instrument was further developed by many others, and became rapidly indispensable in business, government, and in households.

View the full Wikipedia page for Telephone
↑ Return to Menu

Electrical cable in the context of Nokia Corporation

Nokia Corporation is a Finnish multinational telecommunications, information technology, and consumer electronics corporation, originally established as a pulp mill in 1865. Nokia's main headquarters are in Espoo, Finland, in the Helsinki metropolitan area, but the company's actual roots are in the Tampere region of Pirkanmaa. In 2020, Nokia employed approximately 92,000 people across over 100 countries, did business in more than 130 countries, and reported annual revenues of around €23 billion. Nokia is a public limited company listed on the Nasdaq Helsinki and New York Stock Exchange. It was the world's 415th-largest company measured by 2016 revenues, according to the Fortune Global 500, having peaked at 85th place in 2009. It is a component of the Euro Stoxx 50 stock market index.

The company has operated in various industries over the past 150 years. It was founded as a pulp mill and had long been associated with rubber and cables, but since the 1990s has focused on large-scale telecommunications infrastructure, technology development, and licensing. Nokia made significant contributions to the mobile telephony industry, assisting in the development of the GSM, 3G, and LTE standards. For a decade beginning in 1998, Nokia was the largest worldwide vendor of mobile phones and smartphones. In the later 2000s, however, Nokia suffered from a series of poor management decisions and soon saw its share of the mobile phone market drop sharply.

View the full Wikipedia page for Nokia Corporation
↑ Return to Menu

Electrical cable in the context of Wire

A wire is a flexible, round bar of metal. Wires are commonly formed by drawing the metal through a hole in a die or draw plate. Wire gauges come in various standard sizes, as expressed in terms of a gauge number or cross-sectional area.

Wires are used to bear mechanical loads, often in the form of wire rope. In electricity and telecommunications signals, wire can refer to electrical cable, which can contain a solid core of a single wire or separate strands in stranded or braided forms.

View the full Wikipedia page for Wire
↑ Return to Menu

Electrical cable in the context of Radio frequency

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around 20 kHz to around 300 GHz. This is roughly between the upper limit of audio frequencies that humans can hear (though these are not electromagnetic) and the lower limit of infrared frequencies, and also encompasses the microwave range. These are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves, so they are used in radio technology, among other uses. Different sources specify different upper and lower bounds for the frequency range.

View the full Wikipedia page for Radio frequency
↑ Return to Menu

Electrical cable in the context of Electrical wiring

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

Wiring is subject to safety standards for design and installation. Allowable wire and cable types and sizes are specified according to the circuit operating voltage and electric current capability, with further restrictions on the environmental conditions, such as ambient temperature range, moisture levels, and exposure to sunlight and chemicals.

View the full Wikipedia page for Electrical wiring
↑ Return to Menu

Electrical cable in the context of Building code

A building code (also building control or building regulations) is a set of rules that specify the standards for construction objects such as buildings and non-building structures. Buildings must conform to the code to obtain planning permission, usually from a local council. The main purpose of building codes is to protect public health, safety and general welfare as they relate to the construction and occupancy of buildings and structures — for example, the building codes in many countries require engineers to consider the effects of soil liquefaction in the design of new buildings. The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority.

Building codes are generally intended to be applied by architects, engineers, interior designers, constructors and regulators but are also used for various purposes by safety inspectors, environmental scientists, real estate developers, subcontractors, manufacturers of building products and materials, insurance companies, facility managers, tenants, and others. Codes regulate the design and construction of structures where adopted into law.

View the full Wikipedia page for Building code
↑ Return to Menu

Electrical cable in the context of Housing (engineering)

In engineering, a housing or enclosure is a container, a protective exterior (e.g. shell) or an enclosing structural element (e.g. chassis or exoskeleton) designed to enable easier handling, provide attachment points for internal mechanisms (e.g. mounting brackets for electrical components, cables and pipings), maintain cleanliness of the contents by shielding dirt/dust, fouling and other contaminations, or protect interior mechanisms (e.g. delicate integrated electrical fittings) from structural stress and/or potential physical, thermal, chemical, biological or radiational damages from the surrounding environment. Housing may also be the body of a device, vital to its function.

View the full Wikipedia page for Housing (engineering)
↑ Return to Menu

Electrical cable in the context of Feed line

A radio transmitter or receiver is connected to an antenna which emits or receives the radio waves. The antenna feed system or antenna feed is the cable or conductor, and other associated equipment, which connects the transmitter or receiver with the antenna and makes the two devices compatible. In a radio transmitter, the transmitter generates an alternating current of radio frequency, and the feed system feeds the current to the antenna, which converts the power in the current to radio waves. In a radio receiver, the incoming radio waves excite tiny alternating currents in the antenna, and the feed system delivers this current to the receiver, which processes the signal.

To transfer radio frequency current efficiently, the feedline connecting the transmitter or receiver to the antenna must be a special type of cable called transmission line. At microwave frequencies, waveguide is often used, which is a hollow metal pipe carrying radio waves. In a parabolic (dish) antenna the feed is usually also defined to include the feed antenna (feed horn) which emits or receives the radio waves. Particularly in transmitters, the feed system is a critical component which impedance matches the antenna, feedline, and transmitter. To accomplish this, the feed system may also include circuits called antenna tuning units or matching networks between the antenna and feedline and the feedline and transmitter. On an antenna the feed point is the point on the driven antenna element at which the feedline is connected.

View the full Wikipedia page for Feed line
↑ Return to Menu

Electrical cable in the context of Planar transmission line

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections, the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength (one tenth is often used as a rule of thumb), these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled (in most cases, the cross-section is kept constant along the length) so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

The earliest type of planar transmission line was conceived during World War II by Robert M. Barrett. It is known as stripline, and is one of the four main types in modern use, along with microstrip, suspended stripline, and coplanar waveguide. All four of these types consist of a pair of conductors (although in three of them, one of these conductors is the ground plane). Consequently, they have a dominant mode of transmission (the mode is the field pattern of the electromagnetic wave) that is identical, or near-identical, to the mode found in a pair of wires. Other planar types of transmission line, such as slotline, finline, and imageline, transmit along a strip of dielectric, and substrate-integrated waveguide forms a dielectric waveguide within the substrate with rows of posts. These types cannot support the same mode as a pair of wires, and consequently they have different transmission properties. Many of these types have a narrower bandwidth and in general produce more signal distortion than pairs of conductors. Their advantages depend on the exact types being compared, but can include low loss and a better range of characteristic impedance.

View the full Wikipedia page for Planar transmission line
↑ Return to Menu

Electrical cable in the context of Shielded cable

A shielded cable or screened cable is an electrical cable that has a common conductive layer around its conductors for electromagnetic shielding. This shield is usually covered by an outermost layer of the cable. Common types of cable shielding can most broadly be categorized as foil type (often utilizing a metallised film), contraspiralling wire strands (braided or unbraided) or both.A longitudinal wire may be necessary with dielectric spiral foils to short out each turn.

The shield acts as a Faraday cage – a surface that reflects electromagnetic radiation. This reduces both the interference from outside noise onto the signals and the signals from radiating out and potentially disturbing other devices (see electromagnetic compatibility). To be effective against electric fields (see also capacitive coupling), the shield must be grounded. The shield should be electrically continuous to maximize effectiveness, including any cable splices. For high frequency signals (above a few megahertz), this extends to connectors and enclosures, also circumferentially: The cable shielding needs to be circumferentially connected to the enclosure, if any, through the connector or cable gland.

View the full Wikipedia page for Shielded cable
↑ Return to Menu