Electric heating in the context of "Heat energy"

Play Trivia Questions online!

or

Skip to study material about Electric heating in the context of "Heat energy"

Ad spacer

⭐ Core Definition: Electric heating

Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.

Alternatively, a heat pump can achieve around 150% – 600% efficiency for heating, or COP 1.5 - 6.0 Coefficient of performance, because it uses electric power only for transferring existing thermal energy. The heat pump uses an electric motor to drive a reversed refrigeration cycle, that draws heat energy from an external source such as the ground or outside air (or the interior of a refrigerator) and directs that heat into the space to be warmed (in case of a fridge, the kitchen). This makes much better use of electric energy than direct electric heating, but requires much more expensive equipment, plus plumbing. Some heating systems can be operated in reverse for air conditioning so that the interior space is cooled and even hotter air or water is discharged outside or into the ground.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Electric heating in the context of Electricity

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

The presence of either a positive or negative electric charge produces an electric field. The motion of electric charges is an electric current and produces a magnetic field. In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the work done to move an electric charge from one point to another within an electric field, typically measured in volts.

↑ Return to Menu

Electric heating in the context of Electric

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

The presence of either a positive or negative electric charge produces an electric field. The motion of electric charge carriers is an electric current and produces a magnetic field. In most applications, Coulomb's law determines the force acting on an electrically charged particle. Electric potential is the work done to move an electric charge from one position to another within an electric field, typically measured in volts.

↑ Return to Menu

Electric heating in the context of Power cabling

A power cable is an electrical cable used specifically for transmission of electrical power. It is an assembly of one or more electrical conductors, usually held together in a single bundle with an insulating sheath, although some power cables are simply rigged as exposed live wires. Power cables may be detachable portable cords (typically coupled with adaptors), or installed as permanent wirings within buildings and structures, buried in the ground, laid underwater or run overhead. Power cables that are bundled inside thermoplastic sheathing and that are intended to be run inside a building are known as NM-B (nonmetallic sheathed building cable).

Small flexible power cables are used for electrical devices such as computers and peripherals, mobile devices, home appliances, light fixtures, power tools and machinery, as well as household lighting, heating, air conditioning and rooftop photovoltaic and home energy storage systems. Larger power cables are used for transmission of grid electricity to supply industrial, commercial and residential demands, as well as a significant portion of mass transit and freight transport (particularly rail transport).

↑ Return to Menu