Ecological engineering in the context of "Bioengineering"

Play Trivia Questions online!

or

Skip to study material about Ecological engineering in the context of "Bioengineering"




⭐ Core Definition: Ecological engineering

Ecological engineering uses ecology and engineering to predict, design, construct or restore, and manage ecosystems that integrate "human society with its natural environment for the benefit of both".

↓ Menu

In this Dossier

Ecological engineering in the context of Ecological design

Ecological design or ecodesign is an approach to designing products and services that gives special consideration to the environmental impacts of a product over its entire lifecycle. Sim Van der Ryn and Stuart Cowan define it as "any form of design that minimizes environmentally destructive impacts by integrating itself with living processes." Ecological design can also be defined as the process of integrating environmental considerations into design and development with the aim of reducing environmental impacts of products through their life cycle.

The idea helps connect scattered efforts to address environmental issues in architecture, agriculture, engineering, and ecological restoration, among others. The term was first used by Sim Van der Ryn and Stuart Cowan in 1996. Ecological design was originally conceptualized as the "adding in "of environmental factor to the design process, but later turned to the details of eco-design practice, such as product system or individual product or industry as a whole. With the inclusion of life cycle modeling techniques, ecological design was related to the new interdisciplinary subject of industrial ecology.

↑ Return to Menu

Ecological engineering in the context of Nature-based solutions

Nature-based solutions (or nature-based systems, and abbreviated as NBS or NbS) describe the development and use of nature (biodiversity) and natural processes to address diverse socio-environmental issues. These issues include climate change mitigation and adaptation, human security issues such as water security and food security, and disaster risk reduction. The aim is that resilient ecosystems (whether natural, managed, or newly created) provide solutions for the benefit of both societies and biodiversity. The 2019 UN Climate Action Summit highlighted nature-based solutions as an effective method to combat climate change. For example, nature-based systems for climate change adaptation can include natural flood management, restoring natural coastal defences, and providing local cooling.

The concept of NBS is related to the concept of ecological engineering and ecosystem-based adaptation. NBS are also related, conceptually to the practice of ecological restoration. The sustainable management approach is a key aspect of NBS development and implementation.

↑ Return to Menu

Ecological engineering in the context of Biological engineering

Biological engineering orbioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable energy, ecological engineering, agricultural engineering, process engineering and catalysis, and other areas that improve the living standards of societies.

Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs. Bioengineering overlaps substantially with biotechnology and the biomedical sciences in a way analogous to how various other forms of engineering and technology relate to various other sciences (such as aerospace engineering and other space technology to kinetics and astrophysics).

↑ Return to Menu