Earth's magnetosphere in the context of "Field line"

Play Trivia Questions online!

or

Skip to study material about Earth's magnetosphere in the context of "Field line"




⭐ Core Definition: Earth's magnetosphere

In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object, such as a planet or other object, in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo.

In the space environment close to a planetary body with a dipole magnetic field such as Earth, the field lines resemble a simple magnetic dipole. Farther out, field lines can be significantly distorted by the flow of electrically conducting plasma, as emitted from the Sun (i.e., the solar wind) or a nearby star. Planets having active magnetospheres, like the Earth, are capable of mitigating or blocking the effects of solar radiation or cosmic radiation. Interactions of particles and atmospheres with magnetospheres are studied under the specialized scientific subjects of plasma physics, space physics, and aeronomy.

↓ Menu

In this Dossier

Earth's magnetosphere in the context of Coronal mass ejection

A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

If a CME enters interplanetary space, it is sometimes referred to as an interplanetary coronal mass ejection (ICME). ICMEs are capable of reaching and colliding with Earth's magnetosphere, where they can cause geomagnetic storms, aurorae, and in rare cases damage to electrical power grids. The largest recorded geomagnetic perturbation, resulting presumably from a CME, was the solar storm of 1859. Also known as the Carrington Event, it disabled parts of the newly created United States telegraph network, starting fires and electrically shocking some telegraph operators.

↑ Return to Menu

Earth's magnetosphere in the context of Geomagnetic storm

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere that is driven by interactions between the magnetosphere and large-scale transient plasma and magnetic field structures that originate on or near the Sun.

The structures that produce geomagnetic storms include interplanetary coronal mass ejections (CME) and corotating interaction regions (CIR). The former often originate from solar active regions, while the latter originate at the boundary between high- and low-speed streams of solar wind. The frequency of geomagnetic storms increases and decreases with the sunspot cycle. During solar maxima, geomagnetic storms occur more often, with the majority driven by CMEs.

↑ Return to Menu

Earth's magnetosphere in the context of Carrington Event

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking on 1–2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere.

The geomagnetic storm was associated with a very bright solar flare on 1 September 1859. It was observed and recorded independently by British astronomers Richard Carrington and Richard Hodgson—the first records of a solar flare. A geomagnetic storm of this magnitude occurring today has the potential to cause widespread electrical disruptions, blackouts, and damage to the electrical power grid.

↑ Return to Menu

Earth's magnetosphere in the context of Alfvén speed

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.

Discovered theoretically by Alfvén in 1942—work that contributed to his 1970 Nobel Prize in Physics—these waves play a fundamental role in numerous astrophysical and laboratory plasma phenomena. Alfvén waves are observed in the solar corona, solar wind, Earth's magnetosphere, fusion plasmas, and various astrophysical settings. They are particularly significant for their role in the coronal heating problem, energy transport in the solar atmosphere, particle acceleration, and plasma heating.

↑ Return to Menu

Earth's magnetosphere in the context of Magnetosphere of Jupiter

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

Jupiter's internal magnetic field is generated by electrical currents in the planet's outer core, which is theorized to be composed of liquid metallic hydrogen. Volcanic eruptions on Jupiter's moon Io eject large amounts of sulfur dioxide gas into space, forming a large torus around the planet. Jupiter's magnetic field forces the torus to rotate with the same angular velocity and direction as the planet. The torus in turn loads the magnetic field with plasma, in the process stretching it into a pancake-like structure called a magnetodisk. In effect, Jupiter's magnetosphere is internally driven, shaped primarily by Io's plasma and its own rotation, rather than by the solar wind as at Earth's magnetosphere. Strong currents in the magnetosphere generate permanent aurorae around the planet's poles and intense variable radio emissions, which means that Jupiter can be thought of as a very weak radio pulsar. Jupiter's aurorae have been observed in almost all parts of the electromagnetic spectrum, including infrared, visible, ultraviolet and soft X-rays.

↑ Return to Menu