Earth's Energy Imbalance in the context of "Earth's Atmosphere"

Play Trivia Questions online!

or

Skip to study material about Earth's Energy Imbalance in the context of "Earth's Atmosphere"

Ad spacer

⭐ Core Definition: Earth's Energy Imbalance

Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also takes into account how energy moves through the climate system. The Sun heats the equatorial tropics more than the polar regions. Therefore, the amount of solar irradiance received by a certain region is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.

Earth's energy budget depends on many factors, such as atmospheric aerosols, greenhouse gases, surface albedo, clouds, and land use patterns. When the incoming and outgoing energy fluxes are in balance, Earth is in radiative equilibrium and the climate system will be relatively stable. Global warming occurs when earth receives more energy than it gives back to space, and global cooling takes place when the outgoing energy is greater.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Earth's Energy Imbalance in the context of Ocean heat content

Ocean heat content (OHC) or ocean heat uptake (OHU) is the energy absorbed and stored by oceans. It is an important indicator of global warming. Ocean heat content is calculated by measuring ocean temperature at many different locations and depths, and integrating the areal density of a change in enthalpic energy over an ocean basin or entire ocean.

Between 1971 and 2018, a steady upward trend in ocean heat content accounted for over 90% of Earth's excess energy from global warming. Scientists estimate a 1961–2022 warming trend of 0.43 ± 0.08 W/m², accelerating at about 0.15 ± 0.04 W/m² per decade. By 2020, about one third of the added energy had propagated to depths below 700 meters. The five highest ocean heat observations to a depth of 2000 meters all occurred in the period 2020–2024. The main driver of this increase has been human-caused greenhouse gas emissions.

↑ Return to Menu