E. B. Ford in the context of "Ecological genetics"

Play Trivia Questions online!

or

Skip to study material about E. B. Ford in the context of "Ecological genetics"

Ad spacer

⭐ Core Definition: E. B. Ford

Edmund Brisco "Henry" Ford FRS FRCP (23 April 1901 – 2 January 1988) was a British ecological geneticist. He was a leader among those British biologists who investigated the role of natural selection in nature. As a schoolboy Ford became interested in lepidoptera, the group of insects which includes butterflies and moths. He went on to study the genetics of natural populations, and invented the field of ecological genetics. Ford was awarded the Royal Society's Darwin Medal in 1954. In the wider world his best known work is Butterflies (1945). Ford was a member of the UK Eugenics Society, of which he was a council member in 1933-1934, also contributing to its publications.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

E. B. Ford in the context of Modern synthesis (20th century)

The modern synthesis was the early 20th-century synthesis of Charles Darwin's theory of evolution and Gregor Mendel's ideas on heredity into a joint mathematical framework. Julian Huxley coined the term in his 1942 book, Evolution: The Modern Synthesis. The synthesis combined the ideas of natural selection, Mendelian genetics, and population genetics. It also related the broad-scale macroevolution seen by palaeontologists to the small-scale microevolution of local populations.

The synthesis was defined differently by its founders, with Ernst Mayr in 1959, G. Ledyard Stebbins in 1966, and Theodosius Dobzhansky in 1974 offering differing basic postulates, though they all include natural selection, working on heritable variation supplied by mutation. Other major figures in the synthesis included E. B. Ford, Bernhard Rensch, Ivan Schmalhausen, and George Gaylord Simpson. An early event in the modern synthesis was R. A. Fisher's 1918 paper on mathematical population genetics, though William Bateson, and separately Udny Yule, had already started to show how Mendelian genetics could work in evolution in 1902.

↑ Return to Menu