DØ experiment in the context of "Large Hadron Collider"

Play Trivia Questions online!

or

Skip to study material about DØ experiment in the context of "Large Hadron Collider"

Ad spacer

⭐ Core Definition: DØ experiment

The DØ experiment (sometimes written D0 experiment, or DZero experiment) was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments (the other was the CDF experiment) located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

DØ research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. These collisions result in "events" containing many new particles created through the transformation of energy into mass according to the relation E=mc. The research involves an intense search for subatomic clues that reveal the character of the building blocks of the universe.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

DØ experiment in the context of Top quark

The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs field. This coupling yt is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and experiments at Fermilab.

Like all other quarks, the top quark is a fermion with spin-1/2 and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of + 2 /3 e. It has a mass of 172.76±0.3 GeV/c, which is close to the rhenium atom mass (more precisely, the average of its isotopes). The antiparticle of the top quark is the top antiquark (symbol: t, sometimes called antitop quark or simply antitop), which differs from it only in that some of its properties have equal magnitude but opposite sign.

↑ Return to Menu