Drosophila in the context of "Pentaradial symmetry"

Play Trivia Questions online!

or

Skip to study material about Drosophila in the context of "Pentaradial symmetry"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Drosophila in the context of Bilaterally symmetric

Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body (responsible for transporting gases, nutrients, and waste products) which are cylindrical and have several planes of symmetry.

Biological symmetry can be thought of as a balanced distribution of duplicate body parts or shapes within the body of an organism. Importantly, unlike in mathematics, symmetry in biology is always approximate. For example, plant leaves – while considered symmetrical – rarely match up exactly when folded in half. Symmetry is one class of patterns in nature whereby there is near-repetition of the pattern element, either by reflection or rotation.

↑ Return to Menu

Drosophila in the context of XY sex-determination system

The XY sex-determination system is a sex-determination system present in many mammals (including humans), some insects (Drosophila), some snakes, some fish (guppies), and some plants (Ginkgo tree).

In this system, the karyotypic sex of an individual is usually determined by a pair of sex chromosomes. Typically, karyotypic females have two of the same kind of sex chromosome (XX), and are called the homogametic sex. Karyotypic males typically have two different kinds of sex chromosomes (XY), and are called the heterogametic sex. In humans, the presence of the Y chromosome is responsible for triggering male phenotypic development; in the absence of the Y chromosome, the individual will usually develop phenotypicaly female. In most species with XY sex determination, an organism must have at least one X chromosome in order to survive.

↑ Return to Menu

Drosophila in the context of Autophagy

Autophagy (or autophagocytosis; from the Greek αὐτόφαγος, autóphagos, meaning "self-devouring" and κύτος, kýtos, meaning "hollow") is the natural, conserved degradation of a biological cell that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. It allows the orderly degradation and recycling of cellular components. Although initially characterized as a primordial degradation pathway induced to protect against starvation, it has become increasingly clear that autophagy also plays a major role in the homeostasis of non-starved cells. Defects in autophagy have been linked to various human diseases, including neurodegeneration and cancer, and interest in modulating autophagy as a potential treatment for these diseases has grown rapidly.

Four forms of autophagy have been identified: macroautophagy, microautophagy, chaperone-mediated autophagy (CMA), and crinophagy. In macroautophagy (the most thoroughly researched form of autophagy), cytoplasmic components (like mitochondria) are targeted and isolated from the rest of the cell within a double-membrane vesicle known as an autophagosome, which, in time, fuses with an available lysosome, bringing its specialty process of waste management and disposal; and eventually the contents of the vesicle (now called an autolysosome) are degraded and recycled. In crinophagy (the least well-known and researched form of autophagy), unnecessary secretory granules are degraded and recycled.

↑ Return to Menu

Drosophila in the context of Geneticist

A geneticist is a biologist or physician who studies genetics, the science of genes, heredity, and variation of organisms. A geneticist can be employed as a scientist or a lecturer. Geneticists may perform general research on genetic processes or develop genetic technologies to aid in the pharmaceutical or and agriculture industries. Some geneticists perform experiments in model organisms such as Drosophila, C. elegans, zebrafish, rodents or humans and analyze data to interpret the inheritance of biological traits. A basic science geneticist is a scientist who usually has earned a PhD in genetics and undertakes research and/or lectures in the field. A medical geneticist is a physician who has been trained in medical genetics as a specialization and evaluates, diagnoses, and manages patients with hereditary conditions or congenital malformations; and provides genetic risk calculations and mutation analysis.

↑ Return to Menu

Drosophila in the context of Genetic assimilation

Genetic assimilation is a process described by Conrad H. Waddington by which a phenotype originally produced in response to an environmental condition, such as exposure to a teratogen, later becomes genetically encoded via artificial selection or natural selection. Despite superficial appearances, this does not require the (Lamarckian) inheritance of acquired characters, although epigenetic inheritance could potentially influence the result. Waddington stated that genetic assimilation overcomes the barrier to selection imposed by what he called canalization of developmental pathways; he supposed that the organism's genetics evolved to ensure that development proceeded in a certain way regardless of normal environmental variations.

The classic example of genetic assimilation was a pair of experiments in 1942 and 1953 by Waddington. He exposed Drosophila fruit fly embryos to ether, producing an extreme change in their phenotype: they developed a double thorax, resembling the effect of the bithorax gene. This is called a homeotic change. Flies which developed halteres (the modified hindwings of true flies, used for balance) with wing-like characteristics were chosen for breeding for 20 generations, by which point the phenotype could be seen without other treatment.

↑ Return to Menu

Drosophila in the context of Insect olfaction

Insect olfaction refers to the function of chemical receptors that enable insects to detect and identify volatile compounds for foraging, predator avoidance, finding mating partners (via pheromones) and locating oviposition habitats. Thus, it is the most important sensation for insects. Most important insect behaviors must be timed perfectly which is dependent on what they smell and when they smell it. For example, olfaction is essential for locating host plants and hunting prey in many species of insects, such as the moth Deilephila elpenor and the wasp Polybia sericea, respectively.

The two organs insects primarily use for detecting odors are the antennae and specialized mouth parts called the maxillary palps. However, a recent study has demonstrated the olfactory role of ovipositor in fig wasps. Inside of these olfactory organs there are neurons called olfactory receptor neurons which, as the name implies, house receptors for scent molecules in their cell membrane. The majority of olfactory receptor neurons typically reside in the antenna. These neurons can be very abundant; for example, Drosophila flies have 2,600 olfactory sensory neurons.

↑ Return to Menu