Dmitri Ivanenko in the context of "National Academy of Sciences of Ukraine"

Play Trivia Questions online!

or

Skip to study material about Dmitri Ivanenko in the context of "National Academy of Sciences of Ukraine"

Ad spacer

⭐ Core Definition: Dmitri Ivanenko

Dmitri Dmitrievich Ivanenko (Ukrainian: Дмитро́ Дми́трович Іване́нко, Russian: Дми́трий Дми́триевич Иване́нко; July 29, 1904 – December 30, 1994) was a Soviet theoretical physicist of Ukrainian origin who made great contributions to the physical science of the twentieth century, especially to nuclear physics, field theory, and gravitation theory. He worked in the Poltava Gravimetric Observatory of the Institute of Geophysics of NAS of Ukraine, was the head of the Theoretical Department Ukrainian Physico-Technical Institute in Kharkiv, Head of the Department of Theoretical Physics of the Kharkiv Institute of Mechanical Engineering. Professor of University of Kharkiv, Professor of Moscow State University (since 1943).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Dmitri Ivanenko in the context of Atomic nucleus

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.

The diameter of the nucleus is in the range of 1.70 fm (1.70×10 m) for hydrogen (the diameter of a single proton) to about 11.7 fm for uranium. These dimensions are much smaller than the diameter of the atom itself (nucleus + electron cloud), by a factor of about 26,634 (uranium atomic radius is about 156 pm (156×10 m)) to about 60,250 (hydrogen atomic radius is about 52.92 pm).

↑ Return to Menu

Dmitri Ivanenko in the context of Nuclear shell model

In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. The first shell model was proposed by Dmitri Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by several physicists, most notably Maria Goeppert Mayer and J. Hans D. Jensen, who received the 1963 Nobel Prize in Physics for their contributions to this model, and Eugene Wigner, who received the Nobel Prize alongside them for his earlier foundational work on atomic nuclei.

The nuclear shell model is partly analogous to the atomic shell model, which describes the arrangement of electrons in an atom, in that a filled shell results in better stability. When adding nucleons (protons and neutrons) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. This observation that there are specific magic quantum numbers of nucleons (2, 8, 20, 28, 50, 82, and 126) that are more tightly bound than the following higher number is the origin of the shell model.

↑ Return to Menu