Diurnal motion in the context of "Geocentric model"

⭐ In the context of the geocentric model, diurnal motion is considered…

Ad spacer

⭐ Core Definition: Diurnal motion

In astronomy, diurnal motion (from Latin diurnus 'daily', from Latin diēs 'day') is the apparent motion of celestial objects (e.g. the Sun and stars) around Earth, or more precisely around the two celestial poles, over the course of one day. It is caused by Earth's rotation around its axis, so almost every star appears to follow a circular arc path, called the diurnal circle, often depicted in star trail photography.

The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day. The first experimental demonstration of this motion was conducted by Léon Foucault. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours, until, after a year has passed, one additional sidereal "day" has elapsed compared to the number of solar days that have gone by.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Diurnal motion in the context of Ptolemaic system

Geocentrism is a superseded astronomical model description of the Universe with Earth at the center. It is also known as the geocentric model, often exemplified specifically by the Ptolemaic system. Under most geocentric models, the Sun, the Moon, stars, and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many European ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt, as well as during the Islamic Golden Age.

Two observations supported the idea that Earth was the center of the Universe. First, from anywhere on Earth, the Sun appears to revolve around Earth once per day. While the Moon and the planets have their own motions, they also appear to revolve around Earth about once per day. The stars appeared to be fixed on a celestial sphere rotating once each day about an axis through the geographical poles of Earth. Second, Earth seems to be unmoving from the perspective of an earthbound observer; it feels solid, stable, and stationary.

↑ Return to Menu

Diurnal motion in the context of Sundial

A sundial is a horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a flat plate (the dial) and a gnomon, which casts a shadow onto the dial. As the Sun appears to move through the sky, the shadow aligns with different hour-lines, which are marked on the dial to indicate the time of day. The style is the time-telling edge of the gnomon, though a single point or nodus may be used. The gnomon casts a broad shadow; the shadow of the style shows the time. The gnomon may be a rod, wire, or elaborately decorated metal casting. The style must be parallel to the axis of the Earth's rotation for the sundial to be accurate throughout the year. The style's angle from horizontal is equal to the sundial's geographical latitude.

The term sundial can refer to any device that uses the Sun's altitude or azimuth (or both) to show the time. Sundials are valued as decorative objects, metaphors, and objects of intrigue and mathematical study.

↑ Return to Menu

Diurnal motion in the context of Sky

The sky is an unobstructed view upward from the surface of the Earth. It includes the atmosphere and outer space. It may also be considered a place between the ground and outer space, thus distinct from outer space.

In the field of astronomy, the sky is also called the celestial sphere. This is an abstract sphere, concentric to the Earth, on which the Sun, Moon, planets, and stars appear to be drifting. The celestial sphere is conventionally divided into designated areas called constellations.

↑ Return to Menu

Diurnal motion in the context of Guide star

In astronomy, a guide star is a reference star used to accurately maintain the tracking by a telescope of a celestial body, whose apparent motion through the sky is primarily due to Earth's rotation.

Accurate telescope pointing and tracking is critical for obtaining good astronomical images and astrophotographs. However, because Earth rotates, the sky appears to be in a constant state of motion relative to Earth. Although this movement appears to be relatively slow when viewed with the naked eye, with the high magnification and consequently smaller field of view provided by even a small telescope, this motion becomes apparent on timescales of the order of seconds.

↑ Return to Menu

Diurnal motion in the context of Ecliptic

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making.

From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars – specifically the Zodiac constellations. The planets of the Solar System can also be seen along the ecliptic, because their orbital planes are very close to Earth's. The Moon's orbital plane is also similar to Earth's; the ecliptic is so named because the ancients noted that eclipses only occur when the Moon is crossing it.

↑ Return to Menu

Diurnal motion in the context of Sun path

Sun path, sometimes also called day arc, refers to the daily (sunrise to sunset) and seasonal arc-like path that the Sun appears to follow across the sky as the Earth rotates and orbits the Sun. The Sun's path affects the length of daytime experienced and amount of daylight received along a certain latitude during a given season.

The relative position of the Sun is a major factor in the heat gain of buildings and in the performance of solar energy systems. Accurate location-specific knowledge of sun path and climatic conditions is essential for economic decisions about solar collector area, orientation, landscaping, summer shading, and the cost-effective use of solar trackers.

↑ Return to Menu