Distributivity in the context of Vector (geometry)


Distributivity in the context of Vector (geometry)

Distributivity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Distributivity in the context of "Vector (geometry)"


⭐ Core Definition: Distributivity

In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equalityis always true in elementary algebra.For example, in elementary arithmetic, one hasTherefore, one would say that multiplication distributes over addition.

This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted ) and the logical or (denoted ) distributes over the other.

↓ Menu
HINT:

In this Dossier

Distributivity in the context of Euclidean vector

In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space. A vector quantity is a vector-valued physical quantity, including units of measurement and possibly a support, formulated as a directed line segment. A vector is frequently depicted graphically as an arrow connecting an initial point A with a terminal point B, and denoted by

A vector is what is needed to "carry" the point A to the point B; the Latin word vector means 'carrier'. It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations which obey the familiar algebraic laws of commutativity, associativity, and distributivity. These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space.

View the full Wikipedia page for Euclidean vector
↑ Return to Menu

Distributivity in the context of Distributive lattice

In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets.

View the full Wikipedia page for Distributive lattice
↑ Return to Menu

Distributivity in the context of Distributivity (order theory)

In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well.

View the full Wikipedia page for Distributivity (order theory)
↑ Return to Menu