Distributed-element model in the context of Hairpin filter


Distributed-element model in the context of Hairpin filter

Distributed-element model Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Distributed-element model in the context of "Hairpin filter"


⭐ Core Definition: Distributed-element model

In electrical engineering, the distributed-element model or transmission-line model of electrical circuits assumes that the attributes of the circuit (resistance, capacitance, and inductance) are distributed continuously throughout the material of the circuit. This is in contrast to the more common lumped-element model, which assumes that these values are lumped into electrical components that are joined by perfectly conducting wires. In the distributed-element model, each circuit element is infinitesimally small, and the wires connecting elements are not assumed to be perfect conductors; that is, they have impedance. Unlike the lumped-element model, it assumes nonuniform current along each branch and nonuniform voltage along each wire.

The distributed model is used where the wavelength becomes comparable to the physical dimensions of the circuit, making the lumped model inaccurate. This occurs at high frequencies, where the wavelength is very short, or on low-frequency, but very long, transmission lines such as overhead power lines.

↓ Menu
HINT:

In this Dossier

Distributed-element model in the context of Distributed-element filter

A distributed-element filter is an electronic filter in which capacitance, inductance, and resistance (the elements of the circuit) are not localised in discrete capacitors, inductors, and resistors as they are in conventional filters. Its purpose is to allow a range of signal frequencies to pass, but to block others. Conventional filters are constructed from inductors and capacitors, and the circuits so built are described by the lumped element model, which considers each element to be "lumped together" at one place. That model is conceptually simple, but it becomes increasingly unreliable as the frequency of the signal increases, or equivalently as the wavelength decreases. The distributed-element model applies at all frequencies, and is used in transmission-line theory; many distributed-element components are made of short lengths of transmission line. In the distributed view of circuits, the elements are distributed along the length of conductors and are inextricably mixed together. The filter design is usually concerned only with inductance and capacitance, but because of this mixing of elements they cannot be treated as separate "lumped" capacitors and inductors. There is no precise frequency above which distributed element filters must be used but they are especially associated with the microwave band (wavelength less than one metre).

Distributed-element filters are used in many of the same applications as lumped element filters, such as selectivity of radio channel, bandlimiting of noise and multiplexing of many signals into one channel. Distributed-element filters may be constructed to have any of the bandforms possible with lumped elements (low-pass, band-pass, etc.) with the exception of high-pass, which is usually only approximated. All filter classes used in lumped element designs (Butterworth, Chebyshev, etc.) can be implemented using a distributed-element approach.

View the full Wikipedia page for Distributed-element filter
↑ Return to Menu

Distributed-element model in the context of Electrical element

In electrical engineering, electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components, the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases, infinitesimal elements are used to model the network in a distributed-element model.

These ideal electrical elements represent actual, physical electrical or electronic components. Still, they do not exist physically and are assumed to have ideal properties. In contrast, actual electrical components have less than ideal properties, a degree of uncertainty in their values, and some degree of nonlinearity. To model the nonideal behavior of a real circuit component may require a combination of multiple ideal electrical elements to approximate its function. For example, an inductor circuit element is assumed to have inductance but no resistance or capacitance, while a real inductor, a coil of wire, has some resistance in addition to its inductance. This may be modeled by an ideal inductance element in series with a resistance.

View the full Wikipedia page for Electrical element
↑ Return to Menu