Dispersion (water waves) in the context of Capillary wave


Dispersion (water waves) in the context of Capillary wave

Dispersion (water waves) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Dispersion (water waves) in the context of "Capillary wave"


⭐ Core Definition: Dispersion (water waves)

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

For a certain water depth, surface gravity waves – i.e. waves occurring at the air–water interface and gravity as the only force restoring it to flatness – propagate faster with increasing wavelength. On the other hand, for a given (fixed) wavelength, gravity waves in deeper water have a larger phase speed than in shallower water. In contrast with the behavior of gravity waves, capillary waves (i.e. only forced by surface tension) propagate faster for shorter wavelengths.

↓ Menu
HINT:

In this Dossier

Dispersion (water waves) in the context of Phase velocity

The phase velocity of a wave is the speed of any wavefront, a surface of constant phase. This is the velocity at which the phase of any constant-frequency component of the wave travels. For such a spectral component, any given phase of the wave (for example, the crest) will appear to travel at the phase velocity. The phase velocity of light waves is not a physically meaningful quantity and is not related to information transfer.

View the full Wikipedia page for Phase velocity
↑ Return to Menu

Dispersion (water waves) in the context of Group velocity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as a capillary wave. The expanding ring of waves is the wave group or wave packet, within which one can discern individual waves that travel faster than the group as a whole. The amplitudes of the individual waves grow as they emerge from the trailing edge of the group and diminish as they approach the leading edge of the group.

View the full Wikipedia page for Group velocity
↑ Return to Menu