Discharge tube in the context of Gas-discharge lamp


Discharge tube in the context of Gas-discharge lamp

Discharge tube Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Discharge tube in the context of "Gas-discharge lamp"


⭐ Core Definition: Discharge tube

A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

The voltage required to initiate and sustain discharge is dependent on the pressure and composition of the fill gas and geometry of the tube. Although the envelope is typically glass, power tubes often use ceramics, and military tubes often use glass-lined metal. Both hot cathode and cold cathode type devices are encountered.

↓ Menu
HINT:

In this Dossier

Discharge tube in the context of Krypton

Krypton (from Ancient Greek: κρυπτός, romanizedkryptos 'the hidden one') is a chemical element; it has symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace amounts in the atmosphere and is often used with other rare gases in fluorescent lamps. Krypton is chemically inert.

Krypton, like the other noble gases, is used in lighting and photography. Krypton light has many spectral lines, and krypton plasma is useful in bright, high-powered gas lasers (krypton ion and excimer lasers), each of which resonates and amplifies a single spectral line. Krypton fluoride also makes a useful laser medium. From 1960 to 1983, the official definition of the metre was based on the wavelength of one spectral line of krypton-86, because of the high power and relative ease of operation of krypton discharge tubes.

View the full Wikipedia page for Krypton
↑ Return to Menu

Discharge tube in the context of Cold cathode

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

View the full Wikipedia page for Cold cathode
↑ Return to Menu

Discharge tube in the context of Eugen Goldstein

Eugen Goldstein (/ˈɡldstn/; German: [ˈɡoːltʃtaɪn] ; 5 September 1850 – 25 December 1930) was a German physicist. He was an early investigator of discharge tubes, and the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including the hydrogen ion.

View the full Wikipedia page for Eugen Goldstein
↑ Return to Menu