Diophantine geometry in the context of Theorem


Diophantine geometry in the context of Theorem

Diophantine geometry Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Diophantine geometry in the context of "Theorem"


⭐ Core Definition: Diophantine geometry

In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry.

Four theorems in Diophantine geometry that are of fundamental importance include:

↓ Menu
HINT:

In this Dossier

Diophantine geometry in the context of Number theory

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers).

Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation).

View the full Wikipedia page for Number theory
↑ Return to Menu

Diophantine geometry in the context of Model theory

In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other.As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954.Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit to classical mathematics.This has prompted the comment that "if proof theory is about the sacred, then model theory is about the profane".The applications of model theory to algebraic and Diophantine geometry reflect this proximity to classical mathematics, as they often involve an integration of algebraic and model-theoretic results and techniques. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

View the full Wikipedia page for Model theory
↑ Return to Menu

Diophantine geometry in the context of Diophantine equation

In mathematics, a Diophantine equation is a polynomial equation with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates the sum of two or more unknowns, with coefficients, to a constant. An exponential Diophantine equation is one in which unknowns can appear in exponents.

Diophantine problems have fewer equations than unknowns and involve finding integers that solve all equations simultaneously. Because such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called Diophantine geometry.

View the full Wikipedia page for Diophantine equation
↑ Return to Menu

Diophantine geometry in the context of Arithmetic geometry

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In more abstract terms, arithmetic geometry can be defined as the study of schemes of finite type over the spectrum of the ring of integers.

View the full Wikipedia page for Arithmetic geometry
↑ Return to Menu

Diophantine geometry in the context of Helmut Hasse

Helmut Hasse (German: [ˈhasə]; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of p-adic numbers to local class field theory and diophantine geometry (Hasse principle), and to local zeta functions.

View the full Wikipedia page for Helmut Hasse
↑ Return to Menu

Diophantine geometry in the context of Rational point

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for n > 2, the Fermat curve of equation has no other rational points than (1, 0), (0, 1), and, if n is even, (–1, 0) and (0, –1).

View the full Wikipedia page for Rational point
↑ Return to Menu