Diophantine approximation in the context of Real number


Diophantine approximation in the context of Real number

Diophantine approximation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Diophantine approximation in the context of "Real number"


⭐ Core Definition: Diophantine approximation

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number p/q is a "good" approximation of a real number α if the absolute value of the difference between p/q and α may not decrease if p/q is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of simple continued fractions.

↓ Menu
HINT:

In this Dossier

Diophantine approximation in the context of Number theory

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers).

Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation).

View the full Wikipedia page for Number theory
↑ Return to Menu

Diophantine approximation in the context of Square root of 2

The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. The fraction 99/70 (≈ 1.4142857) is sometimes used as a good rational approximation with a reasonably small denominator.

View the full Wikipedia page for Square root of 2
↑ Return to Menu

Diophantine approximation in the context of Chinese mathematics

Mathematics emerged independently in China by the 11th century BCE. The Chinese independently developed a real number system that includes significantly large and negative numbers, more than one numeral system (binary and decimal), algebra, geometry, number theory and trigonometry.

Since the Han dynasty, as diophantine approximation being a prominent numerical method, the Chinese made substantial progress on polynomial evaluation. Algorithms like regula falsi and expressions like simple continued fractions are widely used and have been well-documented ever since. They deliberately find the principal nth root of positive numbers and the roots of equations. The major texts from the period, The Nine Chapters on the Mathematical Art and the Book on Numbers and Computation gave detailed processes for solving various mathematical problems in daily life. All procedures were computed using a counting board in both texts, and they included inverse elements as well as Euclidean divisions. The texts provide procedures similar to that of Gaussian elimination and Horner's method for linear algebra. The achievement of Chinese algebra reached a zenith in the 13th century during the Yuan dynasty with the development of tian yuan shu.

View the full Wikipedia page for Chinese mathematics
↑ Return to Menu

Diophantine approximation in the context of Geometry of numbers

Geometry of numbers, also known as geometric number theory, is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in and the study of these lattices provides fundamental information on algebraic numbers. Hermann Minkowski (1896) initiated this line of research at the age of 26 in his work The Geometry of Numbers.

The geometry of numbers has a close relationship with other fields of mathematics, especially functional analysis and Diophantine approximation, the problem of finding rational numbers that approximate an irrational quantity.

View the full Wikipedia page for Geometry of numbers
↑ Return to Menu

Diophantine approximation in the context of Klaus Roth

Klaus Friedrich Roth FRS (29 October 1925 – 10 November 2015) was a German-born British mathematician who won the Fields Medal for proving Roth's theorem on the Diophantine approximation of algebraic numbers. He was also a winner of the De Morgan Medal and the Sylvester Medal, and a Fellow of the Royal Society.

Roth moved to England as a child in 1933 to escape the Nazis, and was educated at the University of Cambridge and University College London, finishing his doctorate in 1950. He taught at University College London until 1966, when he took a chair at Imperial College London. He retired in 1988.

View the full Wikipedia page for Klaus Roth
↑ Return to Menu

Diophantine approximation in the context of Axel Thue

Axel Thue (Norwegian: [tʉː]; 19 February 1863 – 7 March 1922) was a Norwegian mathematician, known for his original work in diophantine approximation and combinatorics.

View the full Wikipedia page for Axel Thue
↑ Return to Menu

Diophantine approximation in the context of Dense set

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, is dense in if the smallest closed subset of containing is itself.

The density of a topological space is the least cardinality of a dense subset of

View the full Wikipedia page for Dense set
↑ Return to Menu

Diophantine approximation in the context of Almost periodic function

In mathematics, an almost periodic function is, loosely speaking, a function of a real variable that is periodic to within any desired level of accuracy, given suitably long, well-distributed "almost-periods". The concept was first studied by Harald Bohr and later generalized by Vyacheslav Stepanov, Hermann Weyl and Abram Samoilovitch Besicovitch, amongst others. There is also a notion of almost periodic functions on locally compact abelian groups, first studied by John von Neumann.

Almost periodicity is a property of dynamical systems that appear to retrace their paths through phase space, but not exactly. An example would be a planetary system, with planets in orbits moving with periods that are not commensurable (i.e., with a period vector that is not proportional to a vector of integers). A theorem of Kronecker from diophantine approximation can be used to show that any particular configuration that occurs once, will recur to within any specified accuracy: if we wait long enough we can observe the planets all return to within, say, a second of arc to the positions they once were in.

View the full Wikipedia page for Almost periodic function
↑ Return to Menu