Dichroic filter in the context of "Transparency (optics)"

Play Trivia Questions online!

or

Skip to study material about Dichroic filter in the context of "Transparency (optics)"

Ad spacer

⭐ Core Definition: Dichroic filter

An interference filter, dichroic filter, or thin-film filter is an optical filter that reflects some wavelengths (colors) of light and transmits others, with almost no absorption for all wavelengths of interest. An interference filter may be high-pass, low-pass, bandpass, or band-rejection. They are used in scientific applications, as well as in architectural and theatrical lighting.

An interference filter consists of multiple thin layers of dielectric material having different refractive indices. There may also be metallic layers. Interference filters are wavelength-selective by virtue of the interference effects that take place between the incident and reflected waves at the thin-film boundaries. The principle of operation is similar to a Fabry-Perot etalon.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Dichroic filter in the context of Transparent material

In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable scattering of light. On a macroscopic scale (one in which the dimensions are much larger than the wavelengths of the photons in question), the photons can be said to follow Snell's law. Translucency (also called translucence or translucidity) is the physical property of allowing light to pass through the material (with or without scattering of light). It allows light to pass through but the light does not necessarily follow Snell's law on the macroscopic scale; the photons may be scattered at either of the two interfaces, or internally, where there is a change in the index of refraction. In other words, a translucent material is made up of components with different indices of refraction, while a transparent material is made up of components with a uniform index of refraction. Transparent materials appear clear, with the overall appearance of one color, or any combination leading up to a brilliant spectrum of every color. The opposite property of translucency is opacity. Other categories of visual appearance, related to the perception of regular or diffuse reflection and transmission of light, have been organized under the concept of cesia in an order system with three variables, including transparency, translucency and opacity among the involved aspects.

When light encounters a material, it can interact with it in several different ways. These interactions depend on the wavelength of the light and the nature of the material. Photons interact with an object by some combination of reflection, absorption and transmission.Some materials, such as plate glass and clean water, transmit much of the light that falls on them and reflect little of it; such materials are called optically transparent. Many liquids and aqueous solutions are highly transparent. Absence of structural defects (voids, cracks, etc.) and molecular structure of most liquids are mostly responsible for excellent optical transmission.

↑ Return to Menu

Dichroic filter in the context of Hot mirror

A hot mirror is a specialized dielectric mirror, a dichroic filter, often employed to protect optical systems by reflecting infrared light back into a light source, while allowing visible light to pass. Hot mirrors can be designed to be inserted into the optical system at an incidence angle varying between zero and 45 degrees, and are useful in a variety of applications where the buildup of waste heat can damage components or adversely affect spectral characteristics of the illumination source. Wavelengths reflected by an infrared hot mirror range from about 750 to 1250 nanometers. By transmitting visible light wavelengths while reflecting infrared, hot mirrors can also serve as dichromatic beam splitters for specialized applications in fluorescence microscopy or optical eye tracking.

Some early digital cameras designed for visible light capture, such as the Associated Press NC2000 and Nikon Coolpix 950, were unusually sensitive to infrared radiation, and tended to produce colors that were contaminated with infrared. This was particularly problematic with scenes that contained strong sources of infrared, such as fires, although the effect could be moderated by inserting a photographic hot mirror filter into the imaging pathway. Conversely, these cameras could be used for infrared photography by inserting a cold mirror filter, more commonly known as an infrared filter, into the imaging pathway, most commonly by mounting the filter on the front of the lens.

↑ Return to Menu