Diagnostic equipment in the context of "Bioengineering"

Play Trivia Questions online!

or

Skip to study material about Diagnostic equipment in the context of "Bioengineering"





In this Dossier

Diagnostic equipment in the context of Biological engineering

Biological engineering orbioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable energy, ecological engineering, agricultural engineering, process engineering and catalysis, and other areas that improve the living standards of societies.

Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs. Bioengineering overlaps substantially with biotechnology and the biomedical sciences in a way analogous to how various other forms of engineering and technology relate to various other sciences (such as aerospace engineering and other space technology to kinetics and astrophysics).

↑ Return to Menu

Diagnostic equipment in the context of WHO Model List of Essential Medicines for Children

The WHO Model List of Essential Medicines for Children (aka Essential Medicines List for Children or EMLc), published by the World Health Organization (WHO), contains the medications considered to be most effective and safe in children up to twelve years of age to meet the most important needs in a health system.

The list is divided into core items and complementary items. The core items are deemed to be the most cost-effective options for key health problems and are usable with little additional health care resources. The complementary items either require additional infrastructure such as specially trained health care providers or diagnostic equipment or have a lower cost–benefit ratio.

↑ Return to Menu

Diagnostic equipment in the context of WHO Model List of Essential Medicines

The WHO Model List of Essential Medicines (a.k.a. Essential Medicines List or EML), published by the World Health Organization (WHO), contains the medications considered to be most effective and safe to meet the most important needs in a health system. The list is frequently used by countries to help develop their own local lists of essential medicines. As of 2016, more than 155 countries have created national lists of essential medicines based on the World Health Organization's model list. This includes both developed and developing countries.

The list is divided into core items and complementary items. The core items are deemed to be the most cost-effective options for key health problems and are usable with little additional health care resources. The complementary items either require additional infrastructure such as specially trained health care providers or diagnostic equipment or have a lower cost–benefit ratio. About 25% of items are in the complementary list. Some medications are listed as both core and complementary. While most medications on the list are available as generic products, being under patent does not prevent inclusion.

↑ Return to Menu