Deuterium fusion in the context of Proton–proton chain reaction


Deuterium fusion in the context of Proton–proton chain reaction

⭐ Core Definition: Deuterium fusion

Deuterium fusion, also called deuterium burning, is a nuclear fusion reaction that occurs in stars and some substellar objects, in which a deuterium nucleus (deuteron) and a proton combine to form a helium-3 nucleus. It occurs as the second stage of the proton–proton chain reaction, in which a deuteron formed from two protons fuses with another proton, but can also proceed from primordial deuterium.

↓ Menu
HINT:

In this Dossier

Deuterium fusion in the context of Brown dwarf

Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main-sequence stars. Their mass is approximately 13 to 80 times that of Jupiter (MJ)—not big enough to sustain nuclear fusion of hydrogen into helium in their cores, but massive enough to emit some light and heat from the fusion of deuterium, H, an isotope of hydrogen with a neutron as well as a proton, that can undergo fusion at lower temperatures. The most massive ones (> 65 MJ) can fuse lithium (Li).

Astronomers classify self-luminous objects by spectral type, a distinction intimately tied to the surface temperature, and brown dwarfs occupy types M (2100–3500 K), L (1300–2100 K), T (600–1300 K), and Y (< 600 K). As brown dwarfs do not undergo stable hydrogen fusion, they cool down over time, progressively passing through later spectral types as they age.

View the full Wikipedia page for Brown dwarf
↑ Return to Menu

Deuterium fusion in the context of Sub-brown dwarf

A sub-brown dwarf or planetary-mass brown dwarf is an astronomical object that formed in the same manner as stars and brown dwarfs (i.e. through the collapse of a gas cloud) but that has a planetary mass, therefore by definition below the limiting mass for thermonuclear fusion of deuterium (about 13 MJ).Some researchers include them in the category of rogue planets whereas others call them planetary-mass brown dwarfs.

View the full Wikipedia page for Sub-brown dwarf
↑ Return to Menu

Deuterium fusion in the context of WISE 0855−0714

WISE 0855−0714 (full designation WISE J085510.83−071442.5, or W0855 for short) is a sub-brown dwarf of spectral class Y4, located 7.4 light-years (2.3 parsecs) from the Sun in the constellation Hydra. It is the fourth-closest star or (sub-) brown dwarf system to the Sun and was discovered by Kevin Luhman in 2013 using data from the Wide-field Infrared Survey Explorer (WISE). It is the coldest brown dwarf found yet, having a temperature of about 285 K (12 °C; 53 °F). It has an estimated mass between 3 and 10 Jupiter masses, which makes it a planetary-mass object below the 13 Jupiter mass rough limit for deuterium fusion.

View the full Wikipedia page for WISE 0855−0714
↑ Return to Menu