Design of experiments in the context of Clinical study design


Design of experiments in the context of Clinical study design

Design of experiments Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Design of experiments in the context of "Clinical study design"


⭐ Core Definition: Design of experiments

The design of experiments (DOE), also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.

In its simplest form, an experiment aims at predicting the outcome by introducing a change of the preconditions, which is represented by one or more independent variables, also referred to as "input variables" or "predictor variables." The change in one or more independent variables is generally hypothesized to result in a change in one or more dependent variables, also referred to as "output variables" or "response variables." The experimental design may also identify control variables that must be held constant to prevent external factors from affecting the results. Experimental design involves not only the selection of suitable independent, dependent, and control variables, but planning the delivery of the experiment under statistically optimal conditions given the constraints of available resources. There are multiple approaches for determining the set of design points (unique combinations of the settings of the independent variables) to be used in the experiment.

↓ Menu
HINT:

In this Dossier

Design of experiments in the context of Scientific misconduct

Scientific misconduct is the violation of the standard codes of scholarly conduct and ethical behavior in the publication of professional scientific research. It is the violation of scientific integrity: violation of the scientific method and of research ethics in science, including in the design, conduct, and reporting of research.

View the full Wikipedia page for Scientific misconduct
↑ Return to Menu

Design of experiments in the context of Randomization

Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. It facilitates the objective comparison of treatment effects in experimental design, as it equates groups statistically by balancing both known and unknown factors at the outset of the study. In statistical terms, it underpins the principle of probabilistic equivalence among groups, allowing for the unbiased estimation of treatment effects and the generalizability of conclusions drawn from sample data to the broader population.

Randomization is not haphazard; instead, a random process is a sequence of random variables describing a process whose outcomes do not follow a deterministic pattern but follow an evolution described by probability distributions. For example, a random sample of individuals from a population refers to a sample where every individual has a known probability of being sampled. This would be contrasted with nonprobability sampling, where arbitrary individuals are selected. A runs test can be used to determine whether the occurrence of a set of measured values is random. Randomization is widely applied in various fields, especially in scientific research, statistical analysis, and resource allocation, to ensure fairness and validity in the outcomes.

View the full Wikipedia page for Randomization
↑ Return to Menu

Design of experiments in the context of Random assignment

Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. This ensures that each participant or subject has an equal chance of being placed in any group. Random assignment of participants helps to ensure that any differences between and within the groups are not systematic at the outset of the experiment. Thus, any differences between groups recorded at the end of the experiment can be more confidently attributed to the experimental procedures or treatment.

Random assignment, blinding, and controlling are key aspects of the design of experiments because they help ensure that the results are not spurious or deceptive via confounding. This is why randomized controlled trials are vital in clinical research, especially ones that can be double-blinded and placebo-controlled.

View the full Wikipedia page for Random assignment
↑ Return to Menu

Design of experiments in the context of Study design

Clinical study design is the formulation of clinical trials and other experiments, as well as observational studies, in medical research involving human beings and involving clinical aspects, including epidemiology . It is the design of experiments as applied to these fields. The goal of a clinical study is to assess the safety, efficacy, and / or the mechanism of action of an investigational medicinal product (IMP) or procedure, or new drug or device that is in development, but potentially not yet approved by a health authority (e.g. Food and Drug Administration). It can also be to investigate a drug, device or procedure that has already been approved but is still in need of further investigation, typically with respect to long-term effects or cost-effectiveness.

Some of the considerations here are shared under the more general topic of design of experiments but there can be others, in particular related to patient confidentiality and medical ethics.

View the full Wikipedia page for Study design
↑ Return to Menu

Design of experiments in the context of Control group

In the design of experiments, hypotheses are applied to experimental units in a treatment group. In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. There may be more than one treatment group, more than one control group, or both.

A placebo control group can be used to support a double-blind study, in which some subjects are given an ineffective treatment (in medical studies typically a sugar pill) to minimize differences in the experiences of subjects in the different groups; this is done in a way that ensures no participant in the experiment (subject or experimenter) knows to which group each subject belongs. In such cases, a third, non-treatment control group can be used to measure the placebo effect directly, as the difference between the responses of placebo subjects and untreated subjects, perhaps paired by age group or other factors (such as being twins).

View the full Wikipedia page for Control group
↑ Return to Menu

Design of experiments in the context of Publication bias

In published academic research, publication bias occurs when the outcome of an experiment or research study biases the decision to publish or otherwise distribute it. Publishing only results that show a significant finding disturbs the balance of findings in favor of positive results. The study of publication bias is an important topic in metascience.

Despite similar quality of execution and design, papers with statistically significant results are three times more likely to be published than those with null results. This unduly motivates researchers to manipulate their practices to ensure statistically significant results, such as by data dredging.

View the full Wikipedia page for Publication bias
↑ Return to Menu

Design of experiments in the context of Response surface

In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. RSM is an empirical model which employs the use of mathematical and statistical techniques to relate input variables, otherwise known as factors, to the response. RSM became very useful because other methods available, such as the theoretical model, could be very cumbersome to use, time-consuming, inefficient, error-prone, and unreliable. The method was introduced by George E. P. Box and K. B. Wilson in 1951. The main idea of RSM is to use a sequence of designed experiments to obtain an optimal response. Box and Wilson suggest using a second-degree polynomial model to do this. They acknowledge that this model is only an approximation, but they use it because such a model is easy to estimate and apply, even when little is known about the process.

Statistical approaches such as RSM can be employed to maximize the production of a special substance by optimization of operational factors. Of late, for formulation optimization, the RSM, using proper design of experiments (DoE), has become extensively used. In contrast to conventional methods, the interaction among process variables can be determined by statistical techniques.

View the full Wikipedia page for Response surface
↑ Return to Menu

Design of experiments in the context of Experimental economics

Experimental economics is the application of experimental methods to study economic questions. Data collected in experiments are used to estimate effect size, test the validity of economic theories, and illuminate market mechanisms. Economic experiments usually use cash to motivate subjects, in order to mimic real-world incentives. Experiments are used to help understand how and why markets and other exchange systems function as they do. Experimental economics have also expanded to understand institutions and the law (experimental law and economics).

A fundamental aspect of the subject is design of experiments. Experiments may be conducted in the field or in laboratory settings, whether of individual or group behavior.

View the full Wikipedia page for Experimental economics
↑ Return to Menu