Derivative test in the context of Maximum-likelihood estimation


Derivative test in the context of Maximum-likelihood estimation

Derivative test Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Derivative test in the context of "Maximum-likelihood estimation"


⭐ Core Definition: Derivative test

In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

The usefulness of derivatives to find extrema is proved mathematically by Fermat's theorem of stationary points.

↓ Menu
HINT:

In this Dossier

Derivative test in the context of Maximum likelihood estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when the random errors are assumed to have normal distributions with the same variance.

View the full Wikipedia page for Maximum likelihood estimation
↑ Return to Menu