Density gradient in the context of "Measured"

Play Trivia Questions online!

or

Skip to study material about Density gradient in the context of "Measured"




⭐ Core Definition: Density gradient

Density gradient is a spatial variation in density over a region. The term is used in the natural sciences to describe varying density of matter, but can apply to any quantity whose density can be measured.

↓ Menu

In this Dossier

Density gradient in the context of Ocean temperature

The ocean temperature plays a crucial role in the global climate system, ocean currents and for marine habitats. It varies depending on depth, geographical location and season. Not only does the temperature differ in seawater, so does the salinity. Warm surface water is generally saltier than the cooler deep or polar waters. In polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a uniform temperature of around 0-3 °C. The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F). Near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F).

There is a continuous large-scale circulation of water in the oceans. One part of it is the thermohaline circulation (THC). It is driven by global density gradients created by surface heat and freshwater fluxes. Warm surface currents cool as they move away from the tropics. This happens as the water becomes denser and sinks. Changes in temperature and density move the cold water back towards the equator as a deep sea current. Then it eventually wells up again towards the surface.

↑ Return to Menu

Density gradient in the context of Thermohaline circulation

Thermohaline circulation (THC) is a part of the large-scale ocean circulation driven by global density gradients formed by surface heat and freshwater fluxes. The name thermohaline is derived from thermo-, referring to temperature, and haline, referring to salt content—factors which together determine the density of sea water.

Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling and sinking en-route to higher latitudes - eventually becoming part of the North Atlantic Deep Water - before flowing into the ocean basins. While the bulk of thermohaline water upwells in the Southern Ocean, the oldest waters (with a transit time of approximately 1000 years) upwell in the North Pacific; extensive mixing takes place between the ocean basins, reducing the difference in their densities, forming the Earth's oceans a global system. The water in these circuits transport energy - as heat - and mass - as dissolved solids and gases - around the globe. Consequently, the state of the circulation greatly impacts the climate of Earth.

↑ Return to Menu