Deep Space Climate Observatory in the context of "Rotation period (astronomy)"

Play Trivia Questions online!

or

Skip to study material about Deep Space Climate Observatory in the context of "Rotation period (astronomy)"

Ad spacer

⭐ Core Definition: Deep Space Climate Observatory

Deep Space Climate Observatory (DSCOVR; formerly known as Triana, unofficially known as GoreSat) is a National Oceanic and Atmospheric Administration (NOAA) space weather, space climate, and Earth observation satellite. It was launched by SpaceX on a Falcon 9 v1.1 launch vehicle on 11 February 2015, from Cape Canaveral. This is NOAA's first operational deep space satellite and became its primary system of warning Earth in the event of solar magnetic storms.

DSCOVR was originally proposed as an Earth observation spacecraft positioned at the Sun-Earth L1 Lagrange point, providing live video of the sunlit side of the planet through the Internet as well as scientific instruments to study climate change. Political changes in the United States resulted in the mission's cancellation, and in 2001 the spacecraft was placed into storage.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Deep Space Climate Observatory in the context of Natural satellite

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

In the Solar System, there are six planetary satellite systems, altogether comprising 419 natural satellites with confirmed orbits. Seven objects commonly considered dwarf planets by astronomers are also known to have natural satellites: Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, and Eris. As of January 2022, there are 447 other minor planets known to have natural satellites.

↑ Return to Menu

Deep Space Climate Observatory in the context of Rotation period

In astronomy, the rotation period or spin period of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space). The other type of commonly used "rotation period" is the object's synodic rotation period (or solar day), which may differ, by a fraction of a rotation or more than one rotation, to accommodate the portion of the object's orbital period around a star or another body during one day.

↑ Return to Menu

Deep Space Climate Observatory in the context of Earth's rotation

Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise.

The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where Earth's axis of rotation meets its surface. This point is distinct from Earth's north magnetic pole. The South Pole is the other point where Earth's axis of rotation intersects its surface, in Antarctica.

↑ Return to Menu

Deep Space Climate Observatory in the context of Solar and Heliospheric Observatory

The Solar and Heliospheric Observatory (SOHO) is a European Space Agency (ESA) spacecraft built by a European industrial consortium led by Matra Marconi Space (now Airbus Defence and Space) that was launched on a Lockheed Martin Atlas IIAS launch vehicle on 2 December 1995, to study the Sun. It has also discovered more than 5,000 comets. It began normal operations in May 1996. It is a joint project between the European Space Agency (ESA) and NASA. SOHO was part of the International Solar Terrestrial Physics Program (ISTP). Originally planned as a two-year mission, SOHO continues to operate after 29 years in space; the mission has been extended until the end of 2025, subject to review and confirmation by ESA's Science Programme Committee.

In addition to its scientific mission, it is a main source of near-real-time solar data for space weather prediction. Along with Aditya-L1, Wind, Advanced Composition Explorer (ACE), Deep Space Climate Observatory (DSCOVR) and other satellites, SOHO is one of five spacecraft in the vicinity of the EarthSun L1 point, a point of gravitational balance located approximately 0.99 astronomical unit (AU) from the Sun and 0.01 AU from the Earth. In addition to its scientific contributions, SOHO is distinguished by being the first three-axis-stabilized spacecraft to use its reaction wheels as a kind of virtual gyroscope; the technique was adopted after an on-board emergency in 1998 that nearly resulted in the loss of the spacecraft.

↑ Return to Menu