Decompression melting in the context of "Passive margin"

Play Trivia Questions online!

or

Skip to study material about Decompression melting in the context of "Passive margin"

Ad spacer

⭐ Core Definition: Decompression melting

Igneous rock (igneous from Latin igneus 'fiery'), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

The magma can be derived from partial melts of existing rocks in a terrestrial planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Decompression melting in the context of Asthenosphere

The asthenosphere (from Ancient Greek ἀσθενός (asthenós) 'without strength') is the mechanically weak and ductile region of the upper mantle of Earth. It lies below the lithosphere, at a depth between c. 80 and 200 km (50 and 120 mi) below the surface, and extends as deep as 700 km (430 mi). However, the lower boundary of the asthenosphere is not well defined.

The asthenosphere is almost solid, but a slight amount of melting (less than 0.1% of the rock) contributes to its mechanical weakness. More extensive decompression melting of the asthenosphere takes place where it wells upwards, and this is the most important source of magma on Earth. It is the source of mid-ocean ridge basalt (MORB) and of some magmas that erupt above subduction zones or in regions of continental rifting.

↑ Return to Menu

Decompression melting in the context of Basin and range topography

Basin and range topography is characterized by alternating parallel mountain ranges and valleys. It is a result of crustal extension due to mantle upwelling, gravitational collapse, crustal thickening, or relaxation of confining stresses. The extension results in the thinning and deformation of the upper crust, causing it to fracture and create a series of long parallel normal faults. This results in block faulting, where the blocks of rock between the normal faults either subside, uplift, or tilt. The movement of these blocks results in the alternating valleys and mountains. As the crust thins, it also allows heat from the mantle to more easily melt rock and form magma, resulting in increased volcanic activity.

↑ Return to Menu

Decompression melting in the context of Partial melting

Partial melting is the phenomenon that occurs when a rock is subjected to temperatures high enough to cause certain minerals to melt, but not all of them. Partial melting is an important part of the formation of all igneous rocks and some metamorphic rocks (e.g., migmatites), as evidenced by a multitude of geochemical, geophysical and petrological studies.

The parameters that influence partial melting include the composition of the source rock, the pressure and temperature of the environment, and the availability of water or other fluids. As for the mechanisms that govern partial melting, the main are decompression melting and flux melting. Decompression melting occurs when rocks are brought from higher to lower pressure zones in the Earth's crust, lowering the melting point of its mineral components, thus generating a partial melt. Flux melting, on the other hand, occurs when water and other volatiles get in contact with hot rock, reducing the melting point of minerals, leading to partial melting. With a few exceptions (e.g., Yellowstone), conduction of heat is considered a mechanism too slow and inefficient to partially melt large bodies of rock.

↑ Return to Menu

Decompression melting in the context of Plate theory (volcanism)

The plate theory is a model of volcanism that attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics. According to the plate theory, the principal cause of volcanism is extension of the lithosphere. Extension of the lithosphere is a function of the lithospheric stress field. The global distribution of volcanic activity at a given time reflects the contemporaneous lithospheric stress field, and changes in the spatial and temporal distribution of volcanoes reflect changes in the stress field. The main factors governing the evolution of the stress field are:

  1. Changes in the configuration of plate boundaries.
  2. Vertical motions.
  3. Thermal contraction.

Lithospheric extension enables pre-existing melt in the crust and mantle to escape to the surface. If extension is severe and thins the lithosphere to the extent that the asthenosphere rises, then additional melt is produced by decompression upwelling.

↑ Return to Menu