Deck (bridge) in the context of "Superstructure"

Play Trivia Questions online!

or

Skip to study material about Deck (bridge) in the context of "Superstructure"

Ad spacer

⭐ Core Definition: Deck (bridge)

A deck is the surface of a bridge. A structural element of its superstructure, it may be constructed of concrete, steel, open grating, or wood. Sometimes the deck is covered by a railroad bed and track, asphalt concrete, or other form of pavement for ease of vehicle crossing. A concrete deck may be an integral part of the bridge structure (T-beam or double tee structure) or it may be supported with I-beams or steel girders.

When a bridge deck is installed in a through truss, it is sometimes called a floor system. A suspended bridge deck will be suspended from the main structural elements on a suspension or arch bridge. On some bridges, such as a tied-arch or a cable-stayed, the deck is a primary structural element, carrying tension or compression to support the span.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Deck (bridge) in the context of Suspension bridge

A suspension bridge is a type of bridge in which the deck is hung below suspension cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridges, which lack vertical suspenders, have a long history in many mountainous parts of the world.

Besides the bridge type most commonly called suspension bridges, covered in this article, there are other types of suspension bridges. The type covered here has cables suspended between towers, with vertical suspender cables that transfer the live and dead loads of the deck below, upon which traffic crosses. This arrangement allows the deck to be level or to arc upward for additional clearance. Like other suspension bridge types, this type often is constructed without the use of falsework.

↑ Return to Menu

Deck (bridge) in the context of Road bridge

A bridge is a structure designed to span an obstacle, such as a river or valley, allowing vehicles, pedestrians, and other loads to pass across. The Romans and ancient Chinese built major arch bridges of stone and timber. During the Renaissance, advances in science and engineering led to wider bridge spans and more elegant designs. Concrete was perfected in the early 1800s, and proved to be superior to stone in many regards. With the Industrial Revolution came mass-produced steel, which enabled the creation of suspension and cable-stayed bridges that could span wide obstacles. Over time, the maximum achievable span of bridges has steadily increased, reaching 2 kilometers (1.2 miles) in 2022.

Most bridges consist of a flat deck, supported by structures such as beams, arches, or cables. These structures rest on a foundation that is carefully designed to prevent the bridge from settling into the subsoil. Bridges can be constructed in a wide variety of forms, depending on their purpose and location. Notable types include viaducts, which cross wide valleys; trestles to carry heavy trains; and pontoon bridges which float on water.

↑ Return to Menu

Deck (bridge) in the context of Girder bridge

A girder bridge is a bridge that uses girders as the means of supporting its deck. The two most common types of modern steel girder bridges are plate and box.

The term "girder" is often used interchangeably with "beam" in reference to bridge design. However, some authors define beam bridges slightly differently from girder bridges.

↑ Return to Menu

Deck (bridge) in the context of Double-deck bridge

A bridge is a structure designed to span an obstacle, such as a river or valley, allowing vehicles, pedestrians, and other loads to pass across. Most bridges consist of a flat deck, supported by structures such as beams, arches, or cables. These structures rest on a foundation that is carefully designed to prevent the bridge from settling into the subsoil. Bridges can be constructed in a wide variety of forms, depending on their purpose and location. Notable types include viaducts, which cross wide valleys; trestles to carry heavy trains; and pontoon bridges which float on water.

The Romans and ancient Chinese built major arch bridges of stone and timber. During the Renaissance, advances in science and engineering led to wider bridge spans and more elegant designs. Concrete was perfected in the early 1800s, and proved to be superior to stone in many regards. With the Industrial Revolution came mass-produced steel, which enabled the creation of suspension and cable-stayed bridges that could span wide obstacles. Over time, the maximum achievable span of bridges has steadily increased, reaching 2 kilometers (1.2 miles) in 2022.

↑ Return to Menu