Decimal in the context of "Babylonian mathematics"

Play Trivia Questions online!

or

Skip to study material about Decimal in the context of "Babylonian mathematics"

Ad spacer

⭐ Core Definition: Decimal

The decimal numeral system (also called the base-ten positional numeral system and denary /dnəri/ or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (decimal fractions) of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.

A decimal numeral (also often just decimal or, less correctly, decimal number), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or as in 25.9703 or 3,1415).Decimal may also refer specifically to the digits after the decimal separator, such as in "3.14 is the approximation of π to two decimals".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Decimal in the context of Babylonian astronomy

Babylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia. The numeral system used, sexagesimal, was based on 60, as opposed to ten in the modern decimal system. This system simplified the calculating and recording of unusually great and small numbers.

During the 8th and 7th centuries BC, Babylonian astronomers developed a new empirical approach to astronomy. They began studying and recording their belief system and philosophies dealing with an ideal nature of the universe and began employing an internal logic within their predictive planetary systems. This was an important contribution to astronomy and the philosophy of science, and some modern scholars have thus referred to this approach as a scientific revolution. This approach to astronomy was adopted and further developed in Greek and Hellenistic astrology. Classical Greek and Latin sources frequently use the term Chaldeans for the philosophers, who were considered as priest-scribes specializing in astronomical and other forms of divination. Babylonian astronomy paved the way for modern astrology and is responsible for its spread across the Graeco-Roman empire during the 2nd-century Hellenistic Period. The Babylonians used the sexagesimal system to trace the planets' transits, by dividing the 360 degree sky into 30 degrees, they assigned 12 zodiacal signs to the stars along the ecliptic.

↑ Return to Menu

Decimal in the context of Large numbers

Large numbers are numbers far larger than those encountered in everyday life, such as simple counting or financial transactions. These quantities appear prominently in mathematics, cosmology, cryptography, and statistical mechanics. Googology studies the naming conventions and properties of these immense numbers.

Since the customary decimal format of large numbers can be lengthy, other systems have been devised that allows for shorter representation. For example, a billion is represented as 13 characters (1,000,000,000) in decimal format, but is only 3 characters (10) when expressed in exponential format. A trillion is 17 characters in decimal, but only 4 (10) in exponential. Values that vary dramatically can be represented and compared graphically via logarithmic scale.

↑ Return to Menu

Decimal in the context of Rational number

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer (for example, ). The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also calledthe field of rationals or the field of rational numbers. It is usually denoted by boldface Q, or blackboard bold

A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: 3/4 = 0.75), or eventually begins to repeat the same finite sequence of digits over and over (example: 9/44 = 0.20454545...). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see Repeating decimal § Extension to other bases).

↑ Return to Menu

Decimal in the context of Coinage Act of 1792

The Coinage Act of 1792 (also known as the Mint Act; officially: An act establishing a mint, and regulating the Coins of the United States), passed by the United States Congress on April 2, 1792, created the United States dollar as the country's standard unit of money, established the United States Mint, and regulated the coinage of the United States. This act established the silver dollar as the unit of money in the United States, declared it to be lawful tender, and created a decimal system for U.S. currency.

By the Act, the Mint was to be situated at the seat of government of the United States. The five original officers of the U.S. Mint were a Director, an Assayer, a Chief Coiner, an Engraver, and a Treasurer (not the same as the secretary of the treasury). The Act allowed that one person could perform the functions of Chief Coiner and Engraver. The Assayer, Chief Coiner and Treasurer were required to post a $10,000 bond with the Secretary of the Treasury.

↑ Return to Menu

Decimal in the context of Numeral system

A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.

The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number eleven in the decimal or base-10 numeral system (today, the most common system globally), the number three in the binary or base-2 numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores).

↑ Return to Menu

Decimal in the context of Hindu–Arabic numeral system

The Hindu–Arabic numeral system (also known as the Indo-Arabic numeral system, Hindu numeral system, and Arabic numeral system) is a positional base-ten numeral system for representing integers; its extension to non-integers is the decimal numeral system, which is presently the most common numeral system.

The system was invented between the 1st and 4th centuries by Indian mathematicians. By the 9th century, the system was adopted by Arabic mathematicians who extended it to include fractions. It became more widely known through the writings in Arabic of the Persian mathematician Al-Khwārizmī (On the Calculation with Hindu Numerals, c. 825) and Arab mathematician Al-Kindi (On the Use of the Hindu Numerals, c. 830). The system had spread to medieval Europe by the High Middle Ages, notably following Fibonacci's 13th century Liber Abaci; until the evolution of the printing press in the 15th century, use of the system in Europe was mainly confined to Northern Italy.

↑ Return to Menu

Decimal in the context of Digitizing

Digitization is the process of converting information into a digital (i.e. computer-readable) format. The result is the representation of an object, image, sound, document, or signal (usually an analog signal) obtained by generating a series of numbers that describe a discrete set of points or samples. The result is called digital representation or, more specifically, a digital image, for the object, and digital form, for the signal. In modern practice, the digitized data is in the form of binary numbers, which facilitates processing by digital computers and other operations, but digitizing simply means "the conversion of analog source material into a numerical format"; the decimal or any other number system can be used instead.

Digitization is of crucial importance to data processing, storage, and transmission, because it "allows information of all kinds in all formats to be carried with the same efficiency and also intermingled." Though analog data is typically more stable, digital data has the potential to be more easily shared and accessed and, in theory, can be propagated indefinitely without generation loss, provided it is migrated to new, stable formats as needed. This potential has led to institutional digitization projects designed to improve access and the rapid growth of the digital preservation field.

↑ Return to Menu

Decimal in the context of Positional notation

Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the values may be modified when combined). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.

The Babylonian numeral system, base 60, was the first positional system to be developed, and its influence is present today in the way time and angles are counted in tallies related to 60, such as 60 minutes in an hour and 360 degrees in a circle. The Inca used knots tied in a decimal positional system to store numbers and other values in quipu cords.

↑ Return to Menu

Decimal in the context of Radix

In a positional numeral system, the radix (pl. radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

In any standard positional numeral system, a number is conventionally written as (x)y with x as the string of digits and y as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing parentheses), as it is the most common way to express value. For example, (100)10 is equivalent to 100 (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four.

↑ Return to Menu