David Hilbert in the context of "Hermann Weyl"

Play Trivia Questions online!

or

Skip to study material about David Hilbert in the context of "Hermann Weyl"

Ad spacer

⭐ Core Definition: David Hilbert

David Hilbert (/ˈhɪlbərt/; German: [ˈdaːvɪt ˈhɪlbɐt]; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.

Hilbert discovered and developed a broad range of fundamental ideas including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). He adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set a course for mathematical research of the 20th century.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

David Hilbert in the context of Formal system

A formal system (or deductive system) is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms.

In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics.However, in 1931 Kurt Gödel proved that any consistent formal system sufficiently powerful to express basic arithmetic cannot prove its own completeness. This effectively showed that Hilbert's program was impossible as stated.

↑ Return to Menu

David Hilbert in the context of Mathematical logic

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory showed that almost all ordinary mathematics can be formalized in terms of sets, although there are some theorems that cannot be proven in common axiom systems for set theory. Contemporary work in the foundations of mathematics often focuses on establishing which parts of mathematics can be formalized in particular formal systems (as in reverse mathematics) rather than trying to find theories in which all of mathematics can be developed.

↑ Return to Menu

David Hilbert in the context of Vienna Circle

The Vienna Circle (German: Wiener Kreis) of logical empiricism was a group of elite philosophers and scientists drawn from the natural and social sciences, logic and mathematics who met regularly from 1924 to 1936 at the University of Vienna, chaired by Moritz Schlick. The Vienna Circle had a profound influence on 20th-century philosophy, especially philosophy of science and analytic philosophy.

The philosophical position of the Vienna Circle was called logical empiricism (German: logischer Empirismus), logical positivism or neopositivism. It was influenced by Ernst Mach, David Hilbert, French conventionalism (Henri Poincaré and Pierre Duhem), Gottlob Frege, Bertrand Russell, Ludwig Wittgenstein and Albert Einstein. The Vienna Circle was pluralistic and committed to the ideals of the Enlightenment. It was unified by the aim of making philosophy scientific with the help of modern logic. Main topics were foundational debates in the natural and social sciences, logic and mathematics; the modernization of empiricism by modern logic; the search for an empiricist criterion of meaning; the critique of metaphysics and the unification of the sciences in the unity of science.

↑ Return to Menu

David Hilbert in the context of Kurt Gödel

Kurt Friedrich Gödel (/ˈɡɜːrdəl/ GUR-dəl; German: [ˈkʊʁt ˈɡøːdl̩] ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly influenced scientific and philosophical thinking in the 20th century (at a time when Bertrand Russell, Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics), building on earlier work by Frege, Richard Dedekind, and Georg Cantor.

Gödel's discoveries in the foundations of mathematics led to the proof of his completeness theorem in 1929 as part of his dissertation to earn a doctorate at the University of Vienna, and the publication of Gödel's incompleteness theorems two years later, in 1931. The incompleteness theorems address limitations of formal axiomatic systems. In particular, they imply that a formal axiomatic system satisfying certain technical conditions cannot decide the truth value of all statements about the natural numbers, and cannot prove that it is itself consistent. To prove this, Gödel developed a technique now known as Gödel numbering, which codes formal expressions as natural numbers.

↑ Return to Menu

David Hilbert in the context of Hilbert's program

In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies. As a solution, Hilbert proposed to ground all existing theories to a finite, complete set of axioms, and provide a proof that these axioms were consistent. Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic.

Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of mathematics. In his first theorem, Gödel showed that any consistent system with a computable set of axioms which is capable of expressing arithmetic can never be complete: it is possible to construct a statement that can be shown to be true, but that cannot be derived from the formal rules of the system. In his second theorem, he showed that such a system could not prove its own consistency, so it certainly cannot be used to prove the consistency of anything stronger with certainty. This refuted Hilbert's assumption that a finitistic system could be used to prove the consistency of itself, and therefore could not prove everything else.

↑ Return to Menu

David Hilbert in the context of Hilbert's tenth problem

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

For example, the Diophantine equation has an integer solution: . By contrast, the Diophantine equation has no such solution.

↑ Return to Menu

David Hilbert in the context of University of Göttingen

The University of Göttingen, officially the Georg August University of Göttingen (German: Georg-August-Universität Göttingen, commonly referred to as Georgia Augusta), is a public research university in the city of Göttingen, Lower Saxony, Germany. Founded in 1734 by George II, King of Great Britain and Elector of Hanover, it began instruction in 1737 and is recognized as the oldest university in Lower Saxony. Recognized for its historic and traditional significance, the university has affiliations with 47 Nobel Prize winners by its own count.

The University of Göttingen reached its academic peak from the late 19th to early 20th century, establishing itself as a major international center for mathematics and physics. During this period, scholars such as David Hilbert, Felix Klein, Max Born, and Ludwig Prandtl conducted influential research in mathematics, quantum mechanics, and aerodynamics. The university attracted international students, including prominent Americans such as Edward Everett, George Bancroft, John Lothrop Motley, and J. Robert Oppenheimer. This prominence was severely disrupted by the Nazi rise to power in 1933, when the "great purge" resulted in the dismissal or emigration of numerous faculty members, including many of Jewish origin or those opposed to the regime. The university was subsequently reopened under British control in 1945 and began a process of academic reconstruction.

↑ Return to Menu