Danuvius guggenmosi in the context of Madelaine Böhme


Danuvius guggenmosi in the context of Madelaine Böhme

⭐ Core Definition: Danuvius guggenmosi

Danuvius guggenmosi is an extinct species of great ape that lived 11.6 million years ago during the MiddleLate Miocene in southern Germany. It is the sole member of the genus Danuvius. The area at this time was probably a woodland with a seasonal climate. A male specimen was estimated to have weighed about 31 kg (68 lb), and two females 17 and 19 kg (37 and 42 lb). Both genus and species were described in November 2019.

It is the first-discovered Late Miocene great ape with preserved long bones which could be used to reconstruct the limb anatomy and thus the locomotion of contemporary apes. Its discoverer, paleoanthropologist Madelaine Böhme, says Danuvius had adaptations for both hanging in trees (suspensory behavior) and walking on two legs (bipedalism)—whereas, among present-day great apes, humans are better adapted for the latter and the others the former. Danuvius thus had a method of locomotion unlike any previously known ape called "extended limb clambering", she says, walking directly along tree branches as well as using arms for suspending itself. The last common ancestor between humans and other apes possibly had a similar method of locomotion. However, paleoanthropologist Scott Williams and others say the fragmentary remains do not differ enough from other fossil apes to provide such a clue to the origins of bipedalism.

↓ Menu
HINT:

In this Dossier

Danuvius guggenmosi in the context of Human skeletal changes due to bipedalism

The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.

View the full Wikipedia page for Human skeletal changes due to bipedalism
↑ Return to Menu