DNA strand in the context of Nitrogenous base


DNA strand in the context of Nitrogenous base

DNA strand Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about DNA strand in the context of "Nitrogenous base"


⭐ Core Definition: DNA strand

Deoxyribonucleic acid (pronunciation; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds (known as the phosphodiester linkage) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups, the single-ringed pyrimidines and the double-ringed purines. In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine.

↓ Menu
HINT:

In this Dossier

DNA strand in the context of DNA replication

DNA replication is the process by which a cell makes exact copies of its DNA. This process occurs in all organisms and is essential to biological inheritance, cell division, and repair of damaged tissues. DNA replication ensures that each of the newly divided daughter cells receives its own copy of each DNA molecule.

DNA most commonly occurs in double-stranded form, made up of two complementary strands held together by base pairing of the nucleotides comprising each strand. The two linear strands of a double-stranded DNA molecule typically twist together in the shape of a double helix. During replication, the two strands are separated, and each strand of the original DNA molecule then serves as a template for the production of a complementary counterpart strand, a process referred to as semiconservative replication. As a result, each replicated DNA molecule is composed of one original DNA strand as well as one newly synthesized strand. Cellular proofreading and error-checking mechanisms ensure near-perfect fidelity for DNA replication.

View the full Wikipedia page for DNA replication
↑ Return to Menu