Czochralski process in the context of Single crystal


Czochralski process in the context of Single crystal

Czochralski process Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Czochralski process in the context of "Single crystal"


⭐ Core Definition: Czochralski process

The Czochralski method, also Czochralski technique or Czochralski process, is a method of crystal growth used to obtain single crystals (monocrystals) of semiconductors (e.g. silicon, germanium and gallium arsenide), metals (e.g. palladium, platinum, silver, gold), salts and synthetic gemstones. The method is named after Polish scientist Jan Czochralski, who invented the method in 1915 while investigating the crystallization rates of metals. He made this discovery by accident: instead of dipping his pen into his inkwell, he dipped it in molten tin, and drew a tin filament, which later proved to be a single crystal. The process remains economically important, as roughly 90% of all modern-day semiconductor devices use material derived from this method.

The most important application may be the growth of large cylindrical ingots, or boules, of single crystal silicon used in the electronics industry to make semiconductor devices like integrated circuits. Other semiconductors, such as gallium arsenide, can also be grown by this method, although lower defect densities in this case can be obtained using variants of the Bridgman–Stockbarger method. Other semiconductors such as Silicon Carbide are grown using other methods such as physical vapor transport.

↓ Menu
HINT:

In this Dossier

Czochralski process in the context of Scheelite

Scheelite is a calcium tungstate mineral with the chemical formula CaWO4. It is an important ore of tungsten (wolfram). Scheelite is originally named after Swedish chemist Carl Wilhelm Scheele (1742–1786). Well-formed crystals are sought by collectors and are occasionally fashioned into gemstones when suitably free of flaws. Scheelite has been synthesized using the Czochralski process; the material produced may be used to imitate diamond, as a scintillator, or as a solid-state lasing medium. It was also used in radium paint in the same fashion as was zinc sulphide, and Thomas Edison invented a fluoroscope with a calcium tungstate-coated screen, making the images six times brighter than those with barium platinocyanide; the latter chemical allowed Röntgen to discover X-rays in early November 1895. The semi-precious stone marketed as 'blue scheelite' is actually a rock type consisting mostly of calcite and dolomite, with occasional traces of yellow-orange scheelite.

View the full Wikipedia page for Scheelite
↑ Return to Menu

Czochralski process in the context of Crucible

A crucible is a container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperatures high enough to melt or otherwise alter its contents.

View the full Wikipedia page for Crucible
↑ Return to Menu

Czochralski process in the context of Crystalline silicon

Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight.

In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips. This silicon contains much lower impurity levels than those required for solar cells. Production of semiconductor grade silicon involves a chemical purification to produce hyper-pure polysilicon, followed by a recrystallization process to grow monocrystalline silicon. The cylindrical boules are then cut into wafers for further processing.

View the full Wikipedia page for Crystalline silicon
↑ Return to Menu

Czochralski process in the context of Boule (crystal)

A boule is a single-crystal ingot produced by synthetic means.

A boule of silicon is the starting material for most of the integrated circuits used today. In the semiconductor industry synthetic boules can be made by a number of methods, such as the Bridgman technique and the Czochralski process, which result in a cylindrical rod of material.

View the full Wikipedia page for Boule (crystal)
↑ Return to Menu