Assembly of the International Space Station in the context of "International Space Station"

⭐ In the context of the International Space Station, the assembly and ongoing maintenance of the station is primarily a result of collaboration between…

Ad spacer

⭐ Core Definition: Assembly of the International Space Station

The process of assembling the International Space Station (ISS) has been under way since the 1990s. Zarya, the first ISS module, was launched by a Proton rocket on 20 November 1998. The STS-88 Space Shuttle mission followed two weeks after Zarya was launched, bringing Unity, the first of three node modules, and connecting it to Zarya. This bare 2-module core of the ISS remained uncrewed for the next one and a half years, until in July 2000 the Russian module Zvezda was launched by a Proton rocket, allowing a maximum crew of three astronauts or cosmonauts to be on the ISS permanently.

The ISS has a pressurized volume of approximately 1,000 cubic metres (35,000 cu ft), a mass of approximately 410,000 kilograms (900,000 lb), approximately 100 kilowatts of power output, a truss 108.4 metres (356 ft) long, modules 74 metres (243 ft) long, and a crew of seven. Building the complete station required more than 40 assembly flights. As of 2020, 36 Space Shuttle flights delivered ISS elements. Other assembly flights consisted of modules lifted by the Falcon 9, Russian Proton rocket or, in the case of Pirs and Poisk, the Soyuz-U rocket.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Assembly of the International Space Station in the context of International Space Station

The International Space Station (ISS) is a large space station that was assembled and is maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA (United States), Roscosmos (Russia), ESA (Europe), JAXA (Japan), and CSA (Canada). As the largest space station ever constructed, it primarily serves as a platform for conducting scientific experiments in microgravity and studying the space environment.

The station is divided into two main sections: the Russian Orbital Segment (ROS), developed by Roscosmos, and the US Orbital Segment (USOS), built by NASA, ESA, JAXA, and CSA. A striking feature of the ISS is the Integrated Truss Structure, which connect the station's vast system of solar panels and radiators to its pressurized modules. These modules support diverse functions, including scientific research, crew habitation, storage, spacecraft control, and airlock operations. The ISS has eight docking and berthing ports for visiting spacecraft. The station orbits the Earth at an average altitude of 400 kilometres (250 miles) and circles the Earth in roughly 93 minutes, completing 15.5 orbits per day.

↓ Explore More Topics
In this Dossier

Assembly of the International Space Station in the context of STS-123

STS-123 was a Space Shuttle mission to the International Space Station (ISS) which was flown by Space Shuttle Endeavour. STS-123 was the 1J/A ISS assembly mission. The original launch target date was February 14, 2008, but after the delay of STS-122, the shuttle was launched on March 11, 2008. It was the twenty-fifth shuttle mission to visit the ISS, and delivered the first module of the Japanese laboratory, Japanese Experiment Module (Kibō), and the Canadian Special Purpose Dexterous Manipulator, (SPDM) Dextre robotics system to the station. The mission duration was 15 days and 18 hours, and it was the first mission to fully utilize the Station-to-Shuttle Power Transfer System (SSPTS), allowing space station power to augment the shuttle power systems. The mission set a record for a shuttle's longest stay at the ISS.

↑ Return to Menu

Assembly of the International Space Station in the context of STS-127

STS-127 (ISS assembly flight 2J/A) was a NASA Space Shuttle mission to the International Space Station (ISS). It was the twenty-third flight of Space Shuttle Endeavour. The primary purpose of the STS-127 mission was to deliver and install the final two components of the Japanese Experiment Module: the Exposed Facility (JEM EF), and the Exposed Section of the Experiment Logistics Module (ELM-ES). When Endeavour docked with the ISS on this mission in July 2009, it set a record for the most humans in space at the same time in the same vehicle, the first time thirteen people have been at the station at the same time. Together they represented all ISS program partners and tied the general record of thirteen people in space with the first such occurrence of 1995.

The first launch attempt, on June 13, 2009, was scrubbed due to a gaseous hydrogen leak observed during tanking. The Ground Umbilical Carrier Plate (GUCP) on the external fuel tank experienced a potentially hazardous hydrogen gas leak similar to the fault that delayed the Space Shuttle Discovery mission STS-119 in March 2009. Since a launch date of June 18, 2009, would have conflicted with the launch of the Lunar Reconnaissance Orbiter (LRO)/Lunar Crater Observation and Sensing Satellite (LCROSS), NASA managers discussed the scheduling conflict with both the Lunar Reconnaissance Orbiter project and the Air Force Eastern Range, which provides tracking support for rockets launched from Florida. A decision was made to allow the shuttle to attempt a second launch on June 17, 2009, allowing LRO to launch on June 18, 2009.

↑ Return to Menu

Assembly of the International Space Station in the context of STS-119

STS-119 (ISS assembly flight 15A) was a Space Shuttle mission to the International Space Station (ISS) which was flown by Space Shuttle Discovery during March 2009. It was Discovery's 36th flight. It delivered and assembled the fourth starboard Integrated Truss Segment (S6), and the fourth set of solar arrays and batteries to the station. The launch took place on March 15, 2009, at 19:43 EDT. Discovery successfully landed on March 28, 2009, at 15:13 pm EDT.

↑ Return to Menu