Cyclonic rotation in the context of "Planetary rotation"

Play Trivia Questions online!

or

Skip to study material about Cyclonic rotation in the context of "Planetary rotation"




⭐ Core Definition: Cyclonic rotation

Cyclonic rotation or cyclonic circulation is the atmospheric motion in the same direction as a planet's rotation, as opposed to anticyclonic rotation. In the case of Earth's rotation, the Coriolis effect causes cyclonic rotation to be in a counterclockwise direction in the Northern Hemisphere and clockwise in the Southern Hemisphere. A closed area of winds rotating cyclonically is known as a cyclone.

Cyclonic rotation is characteristic of the vast majority of violent tornadoes and of mesocyclones, which are regions of rotation of storm-scale, 2-6 miles across, an area that is much larger than that of any tornado that may be in it.

↓ Menu

In this Dossier

Cyclonic rotation in the context of Cyclogenesis

Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere (a low-pressure area). Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of some sort of cyclone, and at any size from the microscale to the synoptic scale.

  • Tropical cyclones form due to latent heat driven by significant thunderstorm activity, developing a warm core.
  • Extratropical cyclones form as waves along weather fronts before occluding later in their life cycle as cold core cyclones.
  • Mesocyclones form as warm core cyclones over land, and can lead to tornado formation. Waterspouts can also form from mesocyclones, but more often develop from environments of high instability and low vertical wind shear.

The process in which an extratropical cyclone undergoes a rapid drop in atmospheric pressure (24 millibars or more) in a 24-hour period is referred to as explosive cyclogenesis, and is usually present during the formation of a nor'easter. Similarly, a tropical cyclone can undergo rapid intensification.

↑ Return to Menu

Cyclonic rotation in the context of Polar cyclone

A polar vortex, more formally a circumpolar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

The stratospheric polar vortex is an area of high-speed, cyclonically rotating winds around 15 km to 50 km high, poleward of 50°, and is strongest in winter. It forms during autumn when Arctic or Antarctic temperatures cool rapidly as the polar night begins. The increased temperature difference between the pole and the tropics causes strong winds, and the Coriolis effect causes the vortex to spin up. The stratospheric polar vortex breaks down during spring as the polar night ends. A sudden stratospheric warming (SSW) is an event that occurs when the stratospheric vortex breaks down during winter, and can have significant impacts on surface weather.

↑ Return to Menu

Cyclonic rotation in the context of Trough (meteorology)

A trough is an elongated region of relatively low atmospheric pressure without a closed isobaric contour that would define it as a low pressure area. Since low pressure implies a low height on a pressure surface, troughs and ridges refer to features in an identical sense as those on a topographic map.

Troughs may be at the surface, or aloft, at altitude. Near-surface troughs sometimes mark a weather front associated with clouds, showers, and a wind direction shift. Upper-level troughs in the jet stream (as shown in diagram) reflect cyclonic filaments of vorticity. Their motion induces upper-level wind divergence, lifting and cooling the air ahead (downstream) of the trough and helping to produce cloudy and rain conditions there.

↑ Return to Menu