Cyclic group in the context of Finitely generated group


Cyclic group in the context of Finitely generated group

Cyclic group Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cyclic group in the context of "Finitely generated group"


⭐ Core Definition: Cyclic group

In abstract algebra, a cyclic group or monogenous group is a group, denoted Cn (also frequently n or Zn, not to be confused with the commutative ring of p-adic numbers), that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order n is isomorphic to the additive group of Z/nZ, the integers modulo n. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group is a direct product of cyclic groups.

↓ Menu
HINT:

In this Dossier

Cyclic group in the context of Transitive group action

In mathematics, a group action of a group on a set is a group homomorphism from to some group (under function composition) of functions from to itself. It is said that acts on .

Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles.

View the full Wikipedia page for Transitive group action
↑ Return to Menu

Cyclic group in the context of Cycle graph (algebra)

In group theory, a subfield of abstract algebra, a cycle graph of a group is an undirected graph that illustrates the various cycles of that group, given a set of generators for the group. Cycle graphs are particularly useful in visualizing the structure of small finite groups.

A cycle is the set of powers of a given group element a, where a, the n-th power of an element a, is defined as the product of a multiplied by itself n times. The element a is said to generate the cycle. In a finite group, some non-zero power of a must be the group identity, which we denote either as e or 1; the lowest such power is the order of the element a, the number of distinct elements in the cycle that it generates. In a cycle graph, the cycle is represented as a polygon, with its vertices representing the group elements and its edges indicating how they are linked together to form the cycle.

View the full Wikipedia page for Cycle graph (algebra)
↑ Return to Menu

Cyclic group in the context of Group action

In mathematics, an action of a group on a set is, loosely speaking, an operation that takes an element of and an element of and produces another element of More formally, it is a group homomorphism from to the automorphism group of X (the set of all bijections on along with group operation being function composition). One says that acts on

Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles.

View the full Wikipedia page for Group action
↑ Return to Menu

Cyclic group in the context of Klein four-group

In mathematics, the Klein four-group is an abelian group with four elements, in which each element is self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal reflection, vertical reflection and 180-degree rotation), as the group of bitwise exclusive-or operations on two-bit binary values, or more abstractly as , the direct product of two copies of the cyclic group of order 2 by the Fundamental Theorem of Finitely Generated Abelian Groups. It was named Vierergruppe (German: [ˈfiːʁɐˌɡʁʊpə] , meaning four-group) by Felix Klein in 1884. It is also called the Klein group, and is often symbolized by the letter or as .

The Klein four-group, with four elements, is the smallest group that is not cyclic. Up to isomorphism, there is only one other group of order four: the cyclic group of order 4. Both groups are abelian.

View the full Wikipedia page for Klein four-group
↑ Return to Menu