Cutaneous respiration in the context of "Gills"

Play Trivia Questions online!

or

Skip to study material about Cutaneous respiration in the context of "Gills"

Ad spacer

⭐ Core Definition: Cutaneous respiration

Cutaneous respiration, or cutaneous gas exchange (sometimes called skin breathing), is a form of respiration in which gas exchange occurs across the skin or outer integument of an organism rather than gills or lungs. Cutaneous respiration may be the sole method of gas exchange, or may accompany other forms, such as ventilation. Cutaneous respiration occurs in a wide variety of organisms, including insects, amphibians, fish, sea snakes, turtles, and to a lesser extent in mammals.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cutaneous respiration in the context of Aquatic animal

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in a body of water for all or most of its lifetime. Aquatic animals generally conduct aquatic respiration by extracting dissolved oxygen in water via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are secondarily aquatic animals (e.g. marine reptiles and marine mammals) evolved from terrestrial ancestors that re-adapted to aquatic environments, in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

Almost all aquatic animals reproduce in water, either oviparously or viviparously, and many species routinely migrate between different water bodies during their life cycle. Some animals have fully aquatic life stages (typically as eggs and larvae), while as adults they become terrestrial or semi-aquatic after undergoing metamorphosis. Such examples include amphibians such as frogs, many flying insects such as mosquitoes, mayflies, dragonflies, damselflies and caddisflies, as well as some species of cephalopod molluscs such as the algae octopus (whose larvae are completely planktonic, but adults are highly terrestrial).

↑ Return to Menu

Cutaneous respiration in the context of Terrestrial animal

Terrestrial animals are animals that live predominantly or entirely on land (e.g., cats, chickens, ants, most spiders), as compared with aquatic animals (e.g., fish, whales, octopuses, lobsters, etc.), who live predominantly or entirely in bodies of water; and semiaquatic animals (e.g., crocodilians, seals, platypus and most amphibians), who inhabit coastal, riparian or wetland areas and rely on both aquatic and terrestrial habitats. While most insects (who constitute over half of all known species in the animal kingdom) are terrestrial, some groups, such as mosquitoes and dragonflies, spend their egg and larval stages in water but emerge as fully terrestrial adults (imagos) after completing metamorphosis.

Terrestrial animals conduct respiratory gas exchange directly with the atmosphere, typically via specialized respiratory organs known as lungs, or via cutaneous respiration across the skin. They have also evolved homeostatic features such as impermeable cuticles that can restrict fluid loss, temperature fluctuations and infection, and an excretory system that can filter out nitrogenous waste in the form of urea or uric acid, in contrast to the ammonia-based excretion of aquatic animals. Without the buoyancy of an aqueous environment to support their weight, they have evolved robust skeletons that can hold up their body shape, as well as powerful appendages known as legs or limbs to facilitate terrestrial locomotion, although some perform limbless locomotion using body surface projections such as scales and setae. Some terrestrial animals even have wings or membranes that act as airfoils to generate lift, allowing them to fly and/or glide as airborne animals.

↑ Return to Menu

Cutaneous respiration in the context of Amphibian

Amphibians are ectothermic, anamniotic, four-limbed vertebrate animals that constitute the class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all tetrapods, but excluding the amniotes (tetrapods with an amniotic membrane, such as modern reptiles, birds and mammals). All extant (living) amphibians belong to the monophyletic subclass Lissamphibia, with three living orders: Anura (frogs and toads), Urodela (salamanders), and Gymnophiona (caecilians). Evolved to be mostly semiaquatic, amphibians have adapted to inhabit a wide variety of habitats, with most species living in freshwater, wetland or terrestrial ecosystems (such as riparian woodland, fossorial and even arboreal habitats). Their life cycle typically starts out as aquatic larvae with gills known as tadpoles, but some species have developed behavioural adaptations to bypass this.

Young amphibians generally undergo metamorphosis from an aquatic larval form with gills to an air-breathing adult form with lungs. Amphibians use their skin as a secondary respiratory interface, and some small terrestrial salamanders and frogs even lack lungs and rely entirely on their skin. They are superficially similar to reptiles like lizards, but unlike reptiles and other amniotes, require access to water bodies to breed. With their complex reproductive needs and permeable skins, amphibians are often ecological indicators to habitat conditions; in recent decades there has been a dramatic decline in amphibian populations for many species around the globe.

↑ Return to Menu

Cutaneous respiration in the context of Amniote

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibious stem tetrapod ancestors during the Carboniferous period. Amniota is defined as the smallest crown clade (the group including all descendants of the last common ancestor) containing humans, the Greek tortoise, and the Nile crocodile.Amniotes represent a crucial evolutionary step in vertebrate history, marking the transition from aquatic to fully terrestrial life.

Amniotes are distinguished from the other living tetrapod clade — the non-amniote lissamphibians (frogs/toads, salamanders/newts and caecilians) — by: the development of three extraembryonic membranes (amnion for embryonic protection, chorion for gas exchange, and allantois for metabolic waste disposal or storage); internal fertilization; thicker and keratinized skin; costal respiration (breathing by expanding/constricting the rib cage); the presence of adrenocortical and chromaffin tissues as a discrete pair of glands near their kidneys; more complex kidneys; the presence of an astragalus for better extremity range of motion; the diminished role of skin breathing; and the complete loss of metamorphosis, gills, and lateral lines.

↑ Return to Menu

Cutaneous respiration in the context of Haemolymph

Hemolymph or haemolymph is a body fluid that circulates inside arthropod bodies transporting nutrients and oxygen to tissues, comparable with the blood in vertebrates. It is composed of a plasma in which circulating immune cells called hemocytes are dispersed in addition to many plasma proteins (hemoproteins) and dissolved chemicals. It is the key component of the open circulatory system characteristic of arthropods such as insects, arachnids, myriopods and crustaceans. Some non-arthropod invertebrates such as molluscs and annelids also possess a similar hemolymphatic circulatory system.

In insects, the largest arthropod clade, the hemolymph mainly carries nutrients but not oxygen, which is supplied to the tissues separately by direct deep ventilation through an extensive tracheal system. In other arthropods, oxygen is dissolved into the hemolymph from gills, book lungs or across the cuticle and then distributed to the body tissues via the hemocoel.

↑ Return to Menu