Cumulative distribution function in the context of Joint distribution


Cumulative distribution function in the context of Joint distribution

Cumulative distribution function Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cumulative distribution function in the context of "Joint distribution"


⭐ Core Definition: Cumulative distribution function

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by a right-continuous monotone increasing function (a càdlàg function) satisfying and .

↓ Menu
HINT:

In this Dossier

Cumulative distribution function in the context of Quantile

In statistics and probability, quantiles are cut points dividing the range of a probability distribution into continuous intervals with equal probabilities or dividing the observations in a sample in the same way. There is one fewer quantile than the number of groups created. Common quantiles have special names, such as quartiles (four groups), deciles (ten groups), and percentiles (100 groups). The groups created are termed halves, thirds, quarters, etc., though sometimes the terms for the quantile are used for the groups created, rather than for the cut points.

q-quantiles are values that partition a finite set of values into q subsets of (nearly) equal sizes. There are q − 1 partitions of the q-quantiles, one for each integer k satisfying 0 < k < q. In some cases the value of a quantile may not be uniquely determined, as can be the case for the median (2-quantile) of a uniform probability distribution on a set of even size. Quantiles can also be applied to continuous distributions, providing a way to generalize rank statistics to continuous variables (see percentile rank). When the cumulative distribution function of a random variable is known, the q-quantiles are the application of the quantile function (the inverse function of the cumulative distribution function) to the values {1/q, 2/q, …, (q − 1)/q}.

View the full Wikipedia page for Quantile
↑ Return to Menu

Cumulative distribution function in the context of Ulf Grenander

Ulf Grenander (23 July 1923 – 12 May 2016) was a Swedish statistician and professor of applied mathematics at Brown University.

His early research was in probability theory, stochastic processes, time series analysis, and statistical theory (particularly the order-constrained estimation of cumulative distribution functions using his sieve estimator). In recent decades, Grenander contributed to computational statistics, image processing, pattern recognition, and artificial intelligence. He coined the term pattern theory to distinguish from pattern recognition.

View the full Wikipedia page for Ulf Grenander
↑ Return to Menu

Cumulative distribution function in the context of Joint probability distribution

Given random variables , that are defined on the same probability space, the multivariate or joint probability distribution for is a probability distribution that gives the probability that each of falls in any particular range or discrete set of values specified for that variable. In the case of only two random variables, this is called a bivariate distribution, but the concept generalizes to any number of random variables.

The joint probability distribution can be expressed in terms of a joint cumulative distribution function and either in terms of a joint probability density function (in the case of continuous variables) or joint probability mass function (in the case of discrete variables). These in turn can be used to find two other types of distributions: the marginal distribution giving the probabilities for any one of the variables with no reference to any specific ranges of values for the other variables, and the conditional probability distribution giving the probabilities for any subset of the variables conditional on particular values of the remaining variables.

View the full Wikipedia page for Joint probability distribution
↑ Return to Menu

Cumulative distribution function in the context of Statistical distribution

In statistics, an empirical distribution function (a.k.a. an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function.

View the full Wikipedia page for Statistical distribution
↑ Return to Menu

Cumulative distribution function in the context of Location parameter

In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

A direct example of a location parameter is the parameter of the normal distribution. To see this, note that the probability density function of a normal distribution can have the parameter factored out and be written as: thus fulfilling the first of the definitions given above.

View the full Wikipedia page for Location parameter
↑ Return to Menu

Cumulative distribution function in the context of Quantile function

In probability and statistics, a probability distribution's quantile function is the inverse of its cumulative distribution function. That is, the quantile function of a distribution is the function such that for any random variable and probability .

The quantile function is also called the percentile function (after the percentile), percent-point function, inverse cumulative distribution function or inverse distribution function.

View the full Wikipedia page for Quantile function
↑ Return to Menu

Cumulative distribution function in the context of Rank-size distribution

Rank–size distribution is the distribution of size by rank, in decreasing order of size. For example, if a data set consists of items of sizes 5, 100, 5, and 8, the rank-size distribution is 100, 8, 5, 5 (ranks 1 through 4). This is also known as the rank–frequency distribution, when the source data are from a frequency distribution. These are particularly of interest when the data vary significantly in scales, such as city size or word frequency. These distributions frequently follow a power law distribution, or less well-known ones such as a stretched exponential function or parabolic fractal distribution, at least approximately for certain ranges of ranks; see below.

A rank-size distribution is not a probability distribution or cumulative distribution function. Rather, it is a discrete form of a quantile function (inverse cumulative distribution) in reverse order, giving the size of the element at a given rank.

View the full Wikipedia page for Rank-size distribution
↑ Return to Menu

Cumulative distribution function in the context of Mixture distribution

In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution.

In cases where each of the underlying random variables is continuous, the outcome variable will also be continuous and its probability density function is sometimes referred to as a mixture density. The cumulative distribution function (and the probability density function if it exists) can be expressed as a convex combination (i.e. a weighted sum, with non-negative weights that sum to 1) of other distribution functions and density functions. The individual distributions that are combined to form the mixture distribution are called the mixture components, and the probabilities (or weights) associated with each component are called the mixture weights. The number of components in a mixture distribution is often restricted to being finite, although in some cases the components may be countably infinite in number. More general cases (i.e. an uncountable set of component distributions), as well as the countable case, are treated under the title of compound distributions.

View the full Wikipedia page for Mixture distribution
↑ Return to Menu