Cube in the context of "Square (geometry)"

Play Trivia Questions online!

or

Skip to study material about Cube in the context of "Square (geometry)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cube in the context of Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces.

In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessary to describe electromagnetism. The four dimensions (4D) of spacetime consist of events that are not absolutely defined spatially and temporally, but rather are known relative to the motion of an observer. Minkowski space first approximates the universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. 10 dimensions are used to describe superstring theory (6D hyperspace + 4D), 11 dimensions can describe supergravity and M-theory (7D hyperspace + 4D), and the state-space of quantum mechanics is an infinite-dimensional function space.

↑ Return to Menu

Cube in the context of Platonic solids

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: a tetrahedron (four faces), a cube (six faces), an octahedron (eight faces), a dodecahedron (twelve faces), and an icosahedron (twenty faces).

Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato, who hypothesized in one of his dialogues, the Timaeus, that the classical elements were made of these regular solids.

↑ Return to Menu

Cube in the context of Four-dimensional

Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world. This concept of ordinary space is called Euclidean space because it corresponds to Euclid's geometry, which was originally abstracted from the spatial experiences of everyday life.

Single locations in Euclidean 4D space can be given as vectors or 4-tuples, i.e., as ordered lists of numbers such as (x, y, z, w). For example, the volume of a rectangular box is found by measuring and multiplying its length, width, and height (often labeled x, y, and z). It is only when such locations are linked together into more complicated shapes that the full richness and geometric complexity of 4D spaces emerge. A hint of that complexity can be seen in the accompanying 2D animation of one of the simplest possible regular 4D objects, the tesseract, which is analogous to the 3D cube.

↑ Return to Menu

Cube in the context of Cubozoan

Box jellyfish (class Cubozoa) are cnidarian invertebrates distinguished by their box-like (i.e., cube-shaped) body. Some species of box jellyfish produce potent venom delivered by contact with their tentacles. Stings from some species, including Chironex fleckeri, Carukia barnesi, Malo kingi, and a few others, are extremely painful and often fatal to humans. Some species like the Carybdea murrayana produce a painful sting but are not fatal to humans.

↑ Return to Menu

Cube in the context of NCube (satellite)

NCube (Norwegian CubeSat) was a series of two Norwegian satellites, made by students at several Norwegian universities and university colleges. Due to problems during launch (NCube-1) and deployment into orbit (NCube-2), neither of the satellites became operational.

Both satellites were built to the CubeSat picosatellite standard, which defined their mass and size (10 cm cube). This standard allows one or more cube satellites to be launched by 'piggybacking' with a larger satellite. In this way the smaller satellites get a cheap ride into orbit.

↑ Return to Menu

Cube in the context of Parallelepipeds

In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.

Three equivalent definitions of parallelepiped are

↑ Return to Menu

Cube in the context of Inscribed figure

In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed figure gives another inscribed figure that is congruent to the original one.

Familiar examples of inscribed figures include circles inscribed in triangles or regular polygons, and triangles or regular polygons inscribed in circles. A circle inscribed in any polygon is called its incircle, in which case the polygon is said to be a tangential polygon. A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle.

↑ Return to Menu

Cube in the context of Face (geometry)

In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense.

In more modern treatments of the geometry of polyhedra and higher-dimensional polytopes, a "face" is defined in such a way that it may have any dimension. The vertices, edges, and (2-dimensional) faces of a polyhedron are all faces in this more general sense.

↑ Return to Menu

Cube in the context of Cubic inch

The cubic inch (symbol in) is a unit of volume in the Imperial units and United States customary units systems. It is the volume of a cube with each of its three dimensions (length, width, and height) being one inch long which is equivalent to 1/231 of a US gallon.

The cubic inch and the cubic foot are used as units of volume in the United States, although the common SI units of volume, the liter, milliliter, and cubic meter, are also used, especially in manufacturing and high technology. One cubic inch is exactly 16.387064 mL.

↑ Return to Menu