Cryptosystem in the context of Symmetric-key algorithm


Cryptosystem in the context of Symmetric-key algorithm

Cryptosystem Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cryptosystem in the context of "Symmetric-key algorithm"


⭐ Core Definition: Cryptosystem

In cryptography, a cryptosystem is a suite of cryptographic algorithms needed to implement a particular security service, such as confidentiality (encryption).

Typically, a cryptosystem consists of three algorithms: one for key generation, one for encryption, and one for decryption. The term cipher (sometimes cypher) is often used to refer to a pair of algorithms, one for encryption and one for decryption. Therefore, the term cryptosystem is most often used when the key generation algorithm is important. For this reason, the term cryptosystem is commonly used to refer to public key techniques; however both "cipher" and "cryptosystem" are used for symmetric key techniques.

↓ Menu
HINT:

In this Dossier

Cryptosystem in the context of Adversary (cryptography)

In cryptography, an adversary (rarely opponent, enemy) is an entity whose aim is to prevent the users of the cryptosystem from achieving their goal (primarily privacy, integrity, and availability of data), often with malicious intent. An adversary's efforts might take the form of attempting to discover secret data, corrupting some of the data in the system, spoofing the identity of a message sender or receiver, or forcing system downtime.

Actual adversaries, as opposed to idealized ones, are referred to as attackers. The former term predominates in the cryptographic and the latter in the computer security literature. Eavesdropper Eve, malicious attacker Mallory, opponent Oscar, and intruder Trudy are all adversarial characters widely used in both types of texts.

View the full Wikipedia page for Adversary (cryptography)
↑ Return to Menu

Cryptosystem in the context of Information-theoretic security

A cryptosystem is considered to have information-theoretic security (also called unconditional security) if the system is secure against adversaries with unlimited computing resources and time. In contrast, a system which depends on the computational cost of cryptanalysis to be secure (and thus can be broken by an attack with unlimited computation) is called computationally secure or conditionally secure.

View the full Wikipedia page for Information-theoretic security
↑ Return to Menu

Cryptosystem in the context of Backdoor (computing)

A backdoor is a typically covert method of bypassing normal authentication or encryption in a computer, product, embedded device (e.g. a home router), or its embodiment (e.g. part of a cryptosystem, algorithm, chipset, or even a "homunculus computer"—a tiny computer-within-a-computer such as that found in Intel's AMT technology). Backdoors are most often used for securing remote access to a computer, or obtaining access to plaintext in cryptosystems. From there it may be used to gain access to privileged information like passwords, corrupt or delete data on hard drives, or transfer information within autoschediastic networks.

In the United States, the 1994 Communications Assistance for Law Enforcement Act forces internet providers to provide backdoors for government authorities. In 2024, the U.S. government realized that China had been tapping communications in the U.S. using that infrastructure for months, or perhaps longer; China recorded presidential candidate campaign office phone calls—including employees of the then-vice president of the nation, and of the candidates themselves.

View the full Wikipedia page for Backdoor (computing)
↑ Return to Menu

Cryptosystem in the context of Solovay–Strassen primality test

The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic primality test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem.

View the full Wikipedia page for Solovay–Strassen primality test
↑ Return to Menu

Cryptosystem in the context of Kerckhoffs's principle

Kerckhoffs's principle (also called Kerckhoffs's desideratum, assumption, axiom, doctrine or law) of cryptography was stated by the Dutch cryptographer Auguste Kerckhoffs in the 19th century. The principle holds that a cryptosystem should be secure, even if everything about the system, except the key, is public knowledge. This concept is widely embraced by cryptographers, in contrast to security through obscurity, which is not.

Kerckhoffs's principle was phrased by the American mathematician Claude Shannon as "the enemy knows the system", i.e., "one ought to design systems under the assumption that the enemy will immediately gain full familiarity with them". In that form, it is called Shannon's maxim.

View the full Wikipedia page for Kerckhoffs's principle
↑ Return to Menu

Cryptosystem in the context of Public key cryptography

Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. There are many kinds of public-key cryptosystems, with different security goals, including digital signature, Diffie–Hellman key exchange, public-key key encapsulation, and public-key encryption.

Public key algorithms are fundamental security primitives in modern cryptosystems, including applications and protocols that offer assurance of the confidentiality and authenticity of electronic communications and data storage. They underpin numerous Internet standards, such as Transport Layer Security (TLS), SSH, S/MIME, and PGP. Compared to symmetric cryptography, public-key cryptography can be too slow for many purposes, so these protocols often combine symmetric cryptography with public-key cryptography in hybrid cryptosystems.

View the full Wikipedia page for Public key cryptography
↑ Return to Menu