Crop yield in the context of Fertilizer


Crop yield in the context of Fertilizer

Crop yield Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Crop yield in the context of "Fertilizer"


⭐ Core Definition: Crop yield

In agriculture, the yield is a measurement of the amount of a crop grown, or product such as wool, meat or milk produced, per unit area of land. The seed ratio is another way of calculating yields.

Innovations, such as the use of fertilizer, the creation of better farming tools, and new methods of farming and improved crop varieties have improved yields. The higher the yield and more intensive use of the farmland, the higher the productivity and profitability of a farm; this increases the well-being of farming families. Surplus crops beyond the needs of subsistence agriculture can be sold or bartered. The more grain or fodder a farmer can produce, the more draft animals such as horses and oxen could be supported and harnessed for labour and production of manure. Increased crop yields also means fewer hands are needed on farm, freeing them for industry and commerce. This, in turn, led to the formation and growth of cities, which then translated into an increased demand for foodstuffs or other agricultural products.

↓ Menu
HINT:

In this Dossier

Crop yield in the context of Intensive agriculture

Intensive agriculture, also known as intensive farming (as opposed to extensive farming), conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital, labour, agrochemicals and water, and higher crop yields per unit land area.

Most commercial agriculture is intensive in one or more ways. Forms that rely heavily on industrial methods are often called industrial agriculture, which is characterized by technologies designed to increase yield. Techniques include planting multiple crops per year, reducing the frequency of fallow years, improving cultivars, mechanised agriculture, controlled by increased and more detailed analysis of growing conditions, including weather, soil, water, weeds, and pests. Modern methods frequently involve increased use of non-biotic inputs, such as fertilizers, plant growth regulators, pesticides, and antibiotics for livestock. Intensive farms are widespread in developed nations and increasingly prevalent worldwide. Most of the meat, dairy products, eggs, fruits, and vegetables available in supermarkets are produced by such farms.

View the full Wikipedia page for Intensive agriculture
↑ Return to Menu

Crop yield in the context of Soil fertility

Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:

  • The ability to supply essential plant nutrients and water in adequate amounts and proportions for plant growth and reproduction; and
  • The absence of toxic substances which may inhibit plant growth e.g. Fe which leads to nutrient toxicity.

The following properties contribute to soil fertility in most situations:

View the full Wikipedia page for Soil fertility
↑ Return to Menu

Crop yield in the context of Agricultural productivity

Agricultural productivity is measured as the ratio of agricultural outputs to inputs. While individual products are usually measured by weight, which is known as crop yield, varying products make measuring overall agricultural output difficult. Therefore, agricultural productivity is usually measured as the market value of the final output. This productivity can be compared to many different types of inputs such as labour or land. Such comparisons are called partial measures of productivity.

Agricultural productivity may also be measured by what is termed total factor productivity (TFP). This method of calculating agricultural productivity compares an index of agricultural inputs to an index of outputs. This measure of agricultural productivity was established to remedy the shortcomings of the partial measures of productivity; notably that it is often hard to identify the factors cause them to change. Changes in TFP are usually attributed to technological improvements.

View the full Wikipedia page for Agricultural productivity
↑ Return to Menu

Crop yield in the context of Pesticide

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others (see table). The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products (also known as crop protection products), which in general protect plants from weeds, fungi, or insects.

In general, a pesticide is a chemical or biological agent (such as a virus, bacterium, or fungus) that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease, or are disease vectors. Pesticides thus increase agricultural yields. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

View the full Wikipedia page for Pesticide
↑ Return to Menu

Crop yield in the context of Food prices

Food prices refer to the average price level for food across countries, regions and on a global scale. Food prices affect producers and consumers of food. Price levels depend on the food production process, including food marketing and food distribution. Fluctuation in food prices is determined by a number of compounding factors. Geopolitical events, global demand, exchange rates, government policy, diseases and crop yield, energy costs, availability of natural resources for agriculture, food speculation, changes in the use of soil and weather events directly affect food prices. To a certain extent, adverse price trends can be counteracted by food politics.

The consequences of food price fluctuation are multiple. Increases in food prices, or agflation, endangers food security, particularly for developing countries, and can cause social unrest. Increases in food prices is related to disparities in diet quality and health, particularly among vulnerable populations, such as women and children.

View the full Wikipedia page for Food prices
↑ Return to Menu

Crop yield in the context of Tillage erosion

Tillage erosion is a form of soil erosion occurring in cultivated fields due to the movement of soil by tillage. There is growing evidence that tillage erosion is a major soil erosion process in agricultural lands, surpassing water and wind erosion in many fields all around the world, especially on sloping and hilly lands. A signature spatial pattern of soil erosion shown in many water erosion handbooks and pamphlets, the eroded hilltops, is actually caused by tillage erosion as water erosion mainly causes soil losses in the midslope and lowerslope segments of a slope, not the hilltops. Tillage erosion results in soil degradation, which can lead to significant reduction in crop yield and, therefore, economic losses for the farm.

View the full Wikipedia page for Tillage erosion
↑ Return to Menu

Crop yield in the context of Grazing

In agriculture, grazing is a method of animal husbandry whereby domestic livestock are allowed outdoors to free range (roam around) and consume wild vegetations in order to convert the otherwise indigestible (by human gut) cellulose within grass and other forages into meat, milk, wool and other animal products. Grazing is often done on lands that are unsuitable for arable farming, although there are occasions where arable lands and even prior farmlands are intentionally kept or converted to pastures to raise commercially valuable grazing animals.

Farmers may employ many different strategies of grazing for optimum production: grazing may be continuous, seasonal, or rotational within a grazing period. Longer rotations are found in ley farming, alternating arable and fodder crops; in rest rotation, deferred rotation, and mob grazing, giving grasses a longer time to recover or leaving land fallow. Patch-burn sets up a rotation of fresh grass after burning with two years of rest. Conservation grazing proposes to use grazing animals to improve the biodiversity of a site.

View the full Wikipedia page for Grazing
↑ Return to Menu

Crop yield in the context of Agricultural economics

Agricultural economics is an applied field of economics concerned with the application of economic theory in optimizing the production and distribution of food and fiber products. Agricultural economics began as a branch of economics that specifically dealt with land usage. It focused on maximizing the crop yield while maintaining a good soil ecosystem. Throughout the 20th century the discipline expanded and the current scope of the discipline is much broader. Agricultural economics today includes a variety of applied areas, having considerable overlap with conventional economics. Agricultural economists have made substantial contributions to research in economics, econometrics, development economics, and environmental economics. Agricultural economics influences food policy, agricultural policy, and environmental policy.

View the full Wikipedia page for Agricultural economics
↑ Return to Menu

Crop yield in the context of High-yielding variety

High-yielding varieties (abbreviated as HYVs) of agricultural crops are varieties of crops that are usually characterized by a combination of the following traits in contrast to the conventional ones:

The most popular HYVs can be found among wheat, corn, soybean, rice, potato, and cotton. They are heavily used in commercial and plantation farms.

View the full Wikipedia page for High-yielding variety
↑ Return to Menu

Crop yield in the context of Management science

Management science (or managerial science) is a wide and interdisciplinary study of solving complex problems and making strategic decisions as it pertains to institutions, corporations, governments and other types of organizational entities. It is closely related to management, economics, business, engineering, management consulting, and other fields. It uses various scientific research-based principles, strategies, and analytical methods including mathematical modeling, statistics and numerical algorithms and aims to improve an organization's ability to enact rational and accurate management decisions by arriving at optimal or near optimal solutions to complex decision problems.

Management science looks to help businesses achieve goals using a number of scientific methods. The field was initially an outgrowth of applied mathematics, where early challenges were problems relating to the optimization of systems which could be modeled linearly, i.e., determining the optima (maximum value of profit, assembly line performance, crop yield, bandwidth, etc. or minimum of loss, risk, costs, etc.) of some objective function. Today, the discipline of management science may encompass a diverse range of managerial and organizational activity as it regards to a problem which is structured in mathematical or other quantitative form in order to derive managerially relevant insights and solutions.

View the full Wikipedia page for Management science
↑ Return to Menu

Crop yield in the context of Straw

Straw is an agricultural byproduct consisting of the dry stalks of cereal plants after the grain and chaff have been removed. It makes up about half of the yield by weight of cereal crops such as barley, oats, rice, rye and wheat. It has a number of different uses, including fuel, livestock bedding and fodder, thatching and basket making.

Straw is usually gathered and stored in a straw bale, which is a bale, or bundle, of straw tightly bound with twine, wire, or string. Straw bales may be square, rectangular, star shaped or round, and can be very large, depending on the type of baler used.

View the full Wikipedia page for Straw
↑ Return to Menu

Crop yield in the context of Cover crop

In agriculture, cover crops are plants that are planted to cover the soil rather than for the purpose of being harvested. Cover crops manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife in an agroecosystem—an ecological system managed and shaped by humans. Cover crops can increase microbial activity in the soil, which has a positive effect on nitrogen availability, nitrogen uptake in target crops, and crop yields. Cover crops reduce water pollution risks and remove CO2 from the atmosphere. Cover crops may be an off-season crop planted after harvesting the cash crop. Cover crops are nurse crops in that they increase the survival of the main crop being harvested, and are often grown over the winter.

View the full Wikipedia page for Cover crop
↑ Return to Menu

Crop yield in the context of Corn stover

Corn stover consists of the leaves, stalks, and cobs of corn (maize) (Zea mays ssp. mays L.) plants left in a field after harvest. Such stover makes up about half of the yield of a corn crop and is similar to straw from other cereal grasses; in Britain it is sometimes called corn straw. Corn stover is a very common agricultural product in areas of large amounts of corn production. As well as the non-grain part of harvested corn, the stover can also contain other weeds and grasses. Field corn and sweet corn, two different types of maize, have relatively similar corn stover.

View the full Wikipedia page for Corn stover
↑ Return to Menu

Crop yield in the context of Miscanthus × giganteus

Miscanthus × giganteus, also known as the giant miscanthus, is a sterile hybrid of Miscanthus sinensis and Miscanthus sacchariflorus. It is a perennial grass with bamboo-like stems that can grow to heights of 3–4 metres (13 ft) in one season (from the third season onwards). Just like Pennisetum purpureum, Arundo donax and Saccharum ravennae, it is also called elephant grass.

Miscanthus × giganteus' perennial nature, its ability to grow on marginal land, its water efficiency, non-invasiveness, low fertilizer needs, significant carbon sequestration and high yield have sparked significant interest among researchers, with some arguing that it has "ideal" energy crop properties. Some argue that it can provide negative emissions, while others highlight its water cleaning and soil enhancing qualities. There are practical and economic challenges related to its use in the existing, fossil based combustion infrastructure, however. Torrefaction and other fuel upgrading techniques are being explored as countermeasures to this problem.

View the full Wikipedia page for Miscanthus × giganteus
↑ Return to Menu

Crop yield in the context of Hilling

Hilling, earthing up or ridging is the technique in agriculture and horticulture of heaping soil up around the base of a plant. It can be done by hand (usually using a hoe), or with powered machinery, typically a tractor attachment.

Hilling buries the normally above-ground part of the plant, promoting desired growth. This may encourage the development of additional tubers (as with potatoes), force the plant to grow longer stems (leeks), or for some crops (chicory, leeks, asparagus etc.) this blanching technique keeps the stems or shoots pale and tender, or influences their taste.

View the full Wikipedia page for Hilling
↑ Return to Menu