Crocodilians in the context of Birds


Crocodilians in the context of Birds

Crocodilians Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Crocodilians in the context of "Birds"


⭐ Core Definition: Crocodilians

Crocodilia (/krɒkəˈdɪliə/) is an order of semiaquatic, predatory reptiles that are known as crocodilians. They appeared 83.5 million years ago in the Late Cretaceous period (Campanian stage) and are the closest living relatives of birds, as the two groups are the only known survivors of the Archosauria. Members of the crocodilian total group, the clade Pseudosuchia, appeared about 250 million years ago in the Early Triassic period, and diversified during the Mesozoic era. The order includes the true crocodiles (family Crocodylidae), the alligators and caimans (family Alligatoridae), and the gharial and false gharial (family Gavialidae). Although the term "crocodiles" is sometimes used to refer to all of these families, the term "crocodilians" is less ambiguous.

Extant crocodilians have flat heads with long snouts and tails that are compressed on the sides, with their eyes, ears, and nostrils at the top of the head. Alligators and caimans tend to have broader U-shaped jaws that, when closed, show only the upper teeth, whereas crocodiles usually have narrower V-shaped jaws with both rows of teeth visible when closed. Gharials have extremely slender, elongated jaws. The teeth are conical and peg-like, and the bite is powerful. All crocodilians are good swimmers and can move on land in a "high walk" position, traveling with their legs erect rather than sprawling. Crocodilians have thick skin covered in non-overlapping scales and, like birds, have a four-chambered heart and lungs with unidirectional airflow.

↓ Menu
HINT:

In this Dossier

Crocodilians in the context of Triassic

The Triassic (/trˈæsɪk/; sometimes symbolized as 🝈) is a geologic period and a stratigraphic system that spans 50.5 million years from the end of the Permian Period 251.902 Ma (million years ago) to the beginning of the Jurassic Period 201.4 Ma. The Triassic Period is the first and shortest geologic period of the Mesozoic Era, and the seventh period of the Phanerozoic Eon. The start and the end of the Triassic Period featured major extinction events.

Chronologically, the Triassic Period is divided into three epochs: (i) the Early Triassic, (ii) the Middle Triassic, and (iii) the Late Triassic. The Triassic Period began after the Permian–Triassic extinction event that much reduced the biosphere of planet Earth. The fossil record of the Triassic Period presents three categories of organisms: (i) animals that survived the Permian–Triassic extinction event, (ii) new animals that briefly flourished in the Triassic biosphere, and (iii) new animals that evolved and dominated the Mesozoic Era. Reptiles, especially archosaurs, were the chief terrestrial vertebrates during this time. A specialized group of archosaurs, called dinosaurs, first appeared in the Late Triassic but did not become dominant until the succeeding Jurassic Period. Archosaurs that became dominant in this period were primarily pseudosuchians, relatives and ancestors of modern crocodilians, while some archosaurs specialized in flight, the first time among vertebrates, becoming the pterosaurs. Therapsids, the dominant vertebrates of the preceding Permian period, saw a brief surge in diversification in the Triassic, with dicynodonts and cynodonts quickly becoming dominant, but they declined throughout the period with the majority becoming extinct by the end. However, the first stem-group mammals (mammaliamorphs), themselves a specialized subgroup of cynodonts, appeared during the Triassic and would survive the extinction event, allowing them to radiate during the Jurassic. Amphibians were primarily represented by the temnospondyls, giant aquatic predators that had survived the end-Permian extinction and saw a new burst of diversification in the Triassic, before going extinct by the end; however, early crown-group lissamphibians (including stem-group frogs, salamanders and caecilians) also became more common during the Triassic and survived the extinction event. The earliest known neopterygian fish, including early holosteans and teleosts, appeared near the beginning of the Triassic, and quickly diversified to become among the dominant groups of fish in both freshwater and marine habitats.

View the full Wikipedia page for Triassic
↑ Return to Menu

Crocodilians in the context of Reptile

Reptiles, as commonly defined, are a group of tetrapods with an ectothermic metabolism and amniotic development. Living traditional reptiles comprise four orders: Testudines, Crocodilia, Squamata, and Rhynchocephalia. About 12,000 living species of reptiles are listed in the Reptile Database. The study of the traditional reptile orders, customarily in combination with the study of modern amphibians, is called herpetology.

Reptiles have been subject to several conflicting taxonomic definitions. In evolutionary taxonomy, reptiles are gathered together under the class Reptilia (/rɛpˈtɪliə/ rep-TIL-ee-ə), which corresponds to common usage. Modern cladistic taxonomy regards that group as paraphyletic, since genetic and paleontological evidence has determined that crocodilians are more closely related to birds (class Aves), members of Dinosauria, than to other living reptiles, and thus birds are nested among reptiles from a phylogenetic perspective. Many cladistic systems therefore redefine Reptilia as a clade (monophyletic group) including birds, though the precise definition of this clade varies between authors. A similar concept is clade Sauropsida, which refers to all amniotes more closely related to modern reptiles than to mammals.

View the full Wikipedia page for Reptile
↑ Return to Menu

Crocodilians in the context of Cretaceous–Paleogene extinction event

The Cretaceous–Paleogene (K–Pg) extinction event, formerly known as the Cretaceous-Tertiary (K–T) extinction event, was a major mass extinction of three-quarters of the plant and animal species on Earth approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs. Most other tetrapods weighing more than 25 kg (55 lb) also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians. It marked the end of the Cretaceous period, and with it the Mesozoic era, while heralding the beginning of the current geological era, the Cenozoic Era. In the geologic record, the K–Pg event is marked by a thin layer of sediment called the K–Pg boundary or K–T boundary, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal iridium, which is more common in asteroids than in the Earth's crust.

As originally proposed in 1980 by a team of scientists led by Luis Alvarez and his son Walter, it is now generally thought that the K–Pg extinction resulted from the impact of a massive asteroid 10 to 15 km (6 to 9 mi) wide, 66 million years ago, causing the Chicxulub impact crater and devastating the global environment, mainly through a lingering impact winter which halted photosynthesis in plants and plankton. The impact hypothesis, also known as the Alvarez hypothesis, was bolstered by the discovery of the 180 km (112 mi) Chicxulub crater in the Gulf of Mexico's Yucatán Peninsula in the early 1990s. The temporal match between the ejecta layer, and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling), lead to the conclusion that the Chicxulub impact triggered the mass extinction. A 2016 drilling project into the Chicxulub peak ring confirmed that the peak ring comprised granite ejected within minutes from deep in the Earth, but contained hardly any gypsum, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an aerosol into the atmosphere, causing longer-term effects on the climate and food chain. In October 2019, researchers proposed the mechanisms of the mass extinction, arguing that the Chicxulub asteroid impact event rapidly acidified the oceans and produced long-lasting effects on the climate.

View the full Wikipedia page for Cretaceous–Paleogene extinction event
↑ Return to Menu

Crocodilians in the context of Animal cognition

Animal cognition encompasses the mental capacities of non-human animals, including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.

Researchers have examined animal cognition in mammals (especially primates, cetaceans, elephants, bears, dogs, cats, pigs, horses, cattle, raccoons and rodents), birds (including parrots, fowl, corvids and pigeons), reptiles (lizards, crocodilians, snakes, and turtles), fish and invertebrates (including cephalopods, spiders and insects).

View the full Wikipedia page for Animal cognition
↑ Return to Menu

Crocodilians in the context of Growling

Growling is a low, guttural vocalization produced by animals as an aggressive warning but can also be found in other contexts such as playful behaviors or mating. Different animals will use growling in specific contexts as a form of communication. In humans, low or dull rumbling noises may also be emitted when they are discontent with something or they are angry, although this human sound is often termed "groaning" & "grunting".

Animals that growl include felines, bears, canines and crocodilians. The animals most commonly known for growling are canines, bears, and felines.

View the full Wikipedia page for Growling
↑ Return to Menu

Crocodilians in the context of Eu-

This is a list of common affixes used when scientifically naming species, particularly extinct species for whom only their scientific names are used, along with their derivations.

  • -ales: Pronunciation: /ˈa.lis/. Origin: Latin: -ālis. Meaning: Used to form taxonomic names of orders for plants and fungi.
View the full Wikipedia page for Eu-
↑ Return to Menu

Crocodilians in the context of Sauria

Sauria is the clade of diapsids containing the most recent common ancestor of Archosauria (which includes crocodilians and birds) and Lepidosauria (which includes squamates and the tuatara), and all its descendants. Since most molecular phylogenies recover turtles as more closely related to archosaurs than to lepidosaurs as part of Archelosauria, Sauria can be considered the crown group of diapsids, or reptiles in general. Depending on the systematics, Sauria includes all modern reptiles or most of them (including birds, a type of archosaur) as well as various extinct groups.

Sauria lies within the larger total group Sauropsida, which also contains various stem-reptiles which are more closely related to reptiles than to mammals. Prior to its modern usage, "Sauria" was used as a name for the suborder occupied by lizards, which before 1800 were considered crocodilians.

View the full Wikipedia page for Sauria
↑ Return to Menu

Crocodilians in the context of Aphanosauria

Aphanosauria ("hidden lizards") is an extinct group of reptiles distantly related to dinosaurs (including birds). They are at the base of a group known as Avemetatarsalia, one of two main branches of archosaurs. The other main branch, Pseudosuchia, includes modern crocodilians. Aphanosaurs possessed features from both groups, indicating that they are the oldest and most primitive known clade of avemetatarsalians, at least in terms of their position on the archosaur family tree. Other avemetatarsalians include the flying pterosaurs, small bipedal lagerpetids, herbivorous silesaurids, and the incredibly diverse dinosaurs, which survive to the present day in the form of birds. Aphanosauria is formally defined as the most inclusive clade containing Teleocrater rhadinus and Yarasuchus deccanensis but not Passer domesticus (house sparrow) or Crocodylus niloticus (Nile crocodile). This group was first recognized during the description of Teleocrater.

Although only known by a few genera, Aphanosaurs had a widespread distribution across Pangaea in the Middle Triassic. They were fairly slow quadrupedal long-necked carnivores, a biology more similar to basal archosaurs than to advanced avemetatarsalians such as pterosaurs, lagerpetids, and early dinosaurs. In addition, they seemingly possess 'crocodile-normal' ankles (with a crurotarsal joint), showing that 'advanced mesotarsal' ankles (the form acquired by many dinosaurs, pterosaurs, lagerpetids, and advanced silesaurids) were not basal to the whole clade of Avemetatarsalia. Nevertheless, they possessed elevated growth rates compared to their contemporaries, indicating that they grew quickly, more like birds than other modern reptiles. Despite superficially resembling lizards, the closest modern relatives of aphanosaurs are birds.

View the full Wikipedia page for Aphanosauria
↑ Return to Menu

Crocodilians in the context of Posterior nasal apertures

The choanae (sg.: choana), posterior nasal apertures or internal nostrils are two openings found at the back of the nasal passage between the nasal cavity and the pharynx, in humans and other mammals (as well as crocodilians and most skinks). They are considered one of the most important synapomorphies of tetrapodomorphs, that allowed the passage from water to land.

In animals with secondary palates, they allow breathing when the mouth is closed. In tetrapods without secondary palates their function relates primarily to olfaction (sense of smell).

View the full Wikipedia page for Posterior nasal apertures
↑ Return to Menu