Conservation biology in the context of "Overexploitation"

⭐ In the context of overexploitation, conservation biology primarily considers this practice as a consequence of…

Ad spacer

⭐ Core Definition: Conservation biology

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

The conservation ethic is based on the findings of conservation biology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Conservation biology in the context of Overexploitation

Overexploitation, also called overharvesting or ecological overshoot, refers to harvesting a renewable resource to the point of diminishing returns. Continued overexploitation can lead to the destruction of the resource, as it will be unable to replenish itself. The term applies to various natural resources such as water aquifers, grazing pastures and forests, wild medicinal plants, fish stocks, and other wildlife.

In ecology, overexploitation describes one of the five main activities threatening global biodiversity. Ecologists use the term to describe populations that are harvested at an unsustainable rate, given their natural rates of mortality and capacities for reproduction. Such practices can result in extinction at the population level and even extinction of whole species. In conservation biology, the term is usually used in the context of human economic activity that involves the taking of biological resources, or organisms, in larger numbers than their populations can withstand. The term is also used and defined somewhat differently in fisheries, hydrology, and natural resource management.

↓ Explore More Topics
In this Dossier

Conservation biology in the context of Species

A species (pl. species) is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. It can be defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, palaeontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes is between 8 and 8.7 million. About 14% of these had been described by 2011. All species (except viruses) are given a two-part name, a "binomen". The first part of a binomen is the name of a genus to which the species belongs. The second part is called the specific name or the specific epithet (in botanical nomenclature, also sometimes in zoological nomenclature). For example, Boa constrictor is one of the species of the genus Boa, with constrictor being the specific name.

While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only asexually, the concept of a reproductive species breaks down, and each clonal lineage is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be a perfect model of life, it is still a useful tool to scientists and conservationists for studying life on Earth, regardless of the theoretical difficulties. If species were fixed and distinct from one another, there would be no problem, but evolutionary processes cause species to change. This obliges taxonomists to decide, for example, when enough change has occurred to declare that a fossil lineage should be divided into multiple chronospecies, or when populations have diverged to have enough distinct character states to be described as cladistic species.

↑ Return to Menu

Conservation biology in the context of Sustainable architecture

Sustainable architecture is architecture that seeks to minimize the negative environmental impact of buildings through improved efficiency and moderation in the use of materials, energy, development space and the ecosystem at large. Sometimes, sustainable architecture will also focus on the social aspect of sustainability as well. Sustainable architecture uses a conscious approach to energy and ecological conservation in the design of the built environment.

The concept of sustainability, or ecological design, ensures that the use of current resources does not adversely affect future society's well-being or render it impossible to obtain resources for other uses in the long term.

↑ Return to Menu

Conservation biology in the context of Ecological unit

Ecological units refer to specific levels or degrees of organization within ecological systems. The units that are most commonly used and discussed within ecological systems are those at the levels of individuals, populations, communities, and ecosystems. These terms help distinguish between very specific, localized interactions, such as those occurring at the individual or population level, and broader, more complex interactions that occur at the community and ecosystem levels, providing a framework for understanding ecological structure and processes at different scales.

These ecological units are foundational to the field of ecology as they define and identify the key components and relationships within ecological systems at the different levelsβ€”providing cohesion in conversation and research. Additionally, these terms and the concept of ecological units as a whole are intertwined in ecological theory, understanding biodiversity, conservation strategies, and more. However, these ecological units have been met with some disagreements over the inconsistencies in the exact terminology and its uses. Arguments over stem from conflicting views from four different areas:

↑ Return to Menu

Conservation biology in the context of Apex predator

An apex predator, also known as a top predator or superpredator, is a predator at the top of a food chain, without natural predators of its own.

Apex predators are usually defined in terms of trophic dynamics, meaning that they occupy the highest trophic levels. Food chains are often far shorter on land, usually limited to being secondary consumers – for example, wolves prey mostly upon large herbivores (primary consumers), which eat plants (primary producers). The apex predator concept is applied in wildlife management, conservation, and ecotourism.

↑ Return to Menu

Conservation biology in the context of Endemism

Endemism is the state of a species being found only in a single defined geographic location, such as an island, state, nation, country or other defined zone; organisms that are indigenous to a place are not endemic to it if they are also found elsewhere. For example, the Cape sugarbird (Promerops cafer) is found exclusively in southwestern South Africa and is therefore said to be endemic to that particular part of the world. An endemic species can also be referred to as an endemism or, in scientific literature, as an endemite.

Endemism is an important concept in conservation biology for measuring biodiversity in a particular place and evaluating the risk of extinction for species. Endemism is also of interest in evolutionary biology, because it provides clues about how changes in the environment cause species to undergo range shifts (potentially expanding their range into a larger area or becoming extirpated from an area they once lived), go extinct, or diversify into more species.

↑ Return to Menu

Conservation biology in the context of Fundamental science

Basic research, also called pure research, fundamental research, basic science, or pure science, is a type of scientific research with the aim of improving scientific theories for better understanding and prediction of natural or other phenomena. In contrast, applied research uses scientific theories to develop technology or techniques, which can be used to intervene and alter natural or other phenomena. Though often driven simply by curiosity, basic research often fuels the technological innovations of applied science. The two aims are often practiced simultaneously in coordinated research and development.

In addition to innovations, basic research serves to provide insights and public support of nature, possibly improving conservation efforts. Technological innovations may influence engineering concepts, such as the beak of a kingfisher influencing the design of a high-speed bullet train.

↑ Return to Menu

Conservation biology in the context of Population ecology

Population ecology is a field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration.

The discipline is important in conservation biology, especially in the development of population viability analysis which makes it possible to predict the long-term probability of a species persisting in a given patch of habitat. Although population ecology is a subfield of biology, it provides interesting problems for mathematicians and statisticians who work in population dynamics.

↑ Return to Menu

Conservation biology in the context of Hunting

Hunting is the human practice of seeking, pursuing, capturing, and killing wildlife or feral animals. The most common reasons for humans to hunt are to obtain the animal's body for meat and useful animal products (fur/hide, bone/tusks, horn/antler, etc.), for recreation/taxidermy (see trophy hunting), although it may also be done for resourceful reasons such as removing predators dangerous to humans or domestic animals (e.g. wolf hunting), to eliminate pests and nuisance animals that damage crops/livestock/poultry or spread diseases (see varminting), for trade/tourism (see safari), or for ecological conservation against overpopulation and invasive species (commonly called a cull).

Recreationally hunted species are generally referred to as the game, and are usually mammals and birds. A person participating in a hunt is a hunter or (less commonly) huntsman; a natural area used for hunting is called a game reserve; and an experienced hunter who helps organise a hunt and/or manage the game reserve is also known as a gamekeeper.

↑ Return to Menu