Cortical plasticity in the context of Neural circuit


Cortical plasticity in the context of Neural circuit

Cortical plasticity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cortical plasticity in the context of "Neural circuit"


⭐ Core Definition: Cortical plasticity

Neuroplasticity, also known as neural plasticity or just plasticity, is the medium of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state. This process can occur in response to learning new skills, experiencing environmental changes, recovering from injuries, or adapting to sensory or cognitive deficits. Such adaptability highlights the dynamic and ever-evolving nature of the brain, even into adulthood. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping or neural oscillation. Other forms of neuroplasticity include homologous area adaptation, cross modal reassignment, map expansion, and compensatory masquerade. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition, environmental influences, pregnancy, caloric intake, practice/training, and psychological stress.

Neuroplasticity was once thought by neuroscientists to manifest only during childhood, but research in the later half of the 20th century showed that many aspects of the brain exhibit plasticity through adulthood. The developing brain exhibits a higher degree of plasticity than the adult brain. Activity-dependent plasticity can have significant implications for healthy development, learning, memory, and recovery from brain damage.

↓ Menu
HINT:

In this Dossier

Cortical plasticity in the context of Neurochemistry

Neurochemistry is the study of chemicals, including neurotransmitters and other molecules such as psychopharmaceuticals and neuropeptides, that control and influence the physiology of the nervous system. This particular field within neuroscience examines how neurochemicals influence the operation of neurons, synapses, and neural networks. Neurochemists analyze the biochemistry and molecular biology of organic compounds in the nervous system, and their roles in such neural processes including cortical plasticity, neurogenesis, and neural differentiation.

View the full Wikipedia page for Neurochemistry
↑ Return to Menu