Correlation does not imply causation in the context of "Causal inference"

Play Trivia Questions online!

or

Skip to study material about Correlation does not imply causation in the context of "Causal inference"




⭐ Core Definition: Correlation does not imply causation

The phrase "correlation does not imply causation" refers to the inability to legitimately deduce a cause-and-effect relationship between two events or variables solely on the basis of an observed association or correlation between them. The idea that "correlation implies causation" is an example of a questionable-cause logical fallacy, in which two events occurring together are taken to have established a cause-and-effect relationship. This fallacy is also known by the Latin phrase cum hoc ergo propter hoc ("with this, therefore because of this"). This differs from the fallacy known as post hoc ergo propter hoc ("after this, therefore because of this"), in which an event following another is seen as a necessary consequence of the former event, and from conflation, the errant merging of two events, ideas, databases, etc., into one.

As with any logical fallacy, identifying that the reasoning behind an argument is flawed does not necessarily imply that the resulting conclusion is false. Statistical methods have been proposed that use correlation as the basis for hypothesis tests for causality, including the Granger causality test and convergent cross mapping. The Bradford Hill criteria, also known as Hill's criteria for causation, are a group of nine principles that can be useful in considering the epidemiologic evidence of a causal relationship. Ultimately, assumptions are always required to draw causal conclusions, and modern causal inference frameworks focus on interrogating the strength of these assumptions.

↓ Menu

In this Dossier

Correlation does not imply causation in the context of Correlation and dependence

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the demand curve.

Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in general, the presence of a correlation is not sufficient to infer the presence of a causal relationship (i.e., correlation does not imply causation).

↑ Return to Menu

Correlation does not imply causation in the context of Odds ratio

An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A. Two events are independent if and only if the OR equals 1, i.e., the odds of one event are the same in either the presence or absence of the other event. If the OR is greater than 1, then A and B are associated (correlated) in the sense that, compared to the absence of B, the presence of B raises the odds of A, and symmetrically the presence of A raises the odds of B. Conversely, if the OR is less than 1, then A and B are negatively correlated, and the presence of one event reduces the odds of the other event occurring.

Note that the odds ratio is symmetric in the two events, and no causal direction is implied (correlation does not imply causation): an OR greater than 1 does not establish that B causes A, or that A causes B.

↑ Return to Menu

Correlation does not imply causation in the context of Correlations

In statistics, correlation is a kind of statistical relationship between two random variables or bivariate data. Usually it refers to the degree to which a pair of variables are linearly related. In statistics, more general relationships between variables are called an association, the degree to which some of the variability of one variable can be accounted for by the other.

The presence of a correlation is not sufficient to infer the presence of a causal relationship (i.e., correlation does not imply causation).Furthermore, the concept of correlation is not the same as dependence: if two variables are independent, then they are uncorrelated, but the opposite is not necessarily true: even if two variables are uncorrelated, they might be dependent on each other.

↑ Return to Menu

Correlation does not imply causation in the context of Confounding

In causal inference, a confounder is a variable that affects both the dependent variable and the independent variable, creating a spurious relationship.

Confounding is a causal concept rather than a purely statistical one, and therefore cannot be fully described by correlations or associations alone. The presence of confounders helps explain why correlation does not imply causation, and why careful study design and analytical methods (such as randomization, statistical adjustment, or causal diagrams) are required to distinguish causal effects from spurious associations.

↑ Return to Menu

Correlation does not imply causation in the context of Fertility factor (demography)

Fertility factors are determinants of the number of children that an individual is likely to have. Fertility factors are mostly positive or negative correlations without certain causations.

Factors associated with increased fertility include the intention to have children, remaining religiosity, general inter-generational transmission of values, high status of marriage and cohabitation, maternal and social support, rural residence, a small subset of pro-family social programs, low IQ, personality traits such as conscientiousness, and generally increased food production.

↑ Return to Menu